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Abstract
We consider the inverse problem of determining the spatial dependence of 
a source of the form f (x)σ(t) in the Stokes system defined in Ω× (0, T), 
assuming that σ(t) is known and f (x) is divergence-free. The only available 
observation is a single internal measurement of the velocity and the acceleration, 
for which one of its components is missing. Under adequate hypothesis on 
σ we prove uniqueness of this inverse problem and we establish an explicit 
reconstruction formula. This formula provides the spectral coefficients fk of 
the source f in terms of a family of null controls h(τ) for the corresponding 
adjoint system indexed by τ ∈ (0, T].

Keywords: inverse source problem, null controllability, stokes system

(Some figures may appear in colour only in the online journal)

1.  Introduction

Due to its importance, inverse problems for partial differential equations with incomplete or 
partial data have been studied intensively. Most of the time, incomplete or partial data refers 
to data localized in time or space, in an internal domain or on a subset of the boundary. See 
for instance [4, 19] for inverse problems with partial Cauchy boundary data or see for instance 
[20–22] for single measurement inverse problems from partial internal or boundary data using 
global Carleman inequalities.
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Another important type of incomplete or partial data arises in those cases where the knowl-
edge of the solution is incomplete: if some given function of the solution is known as is the 
case for the so called hybrid inverse problems (see [24] for a review) or if not all the comp
onents of the solution can be observed as is often the case in systems (partially observed sys-
tems [1], pressure estimation from velocity phase-contrast MRI [25], elastography [23], ocean 
acoustics where pressure and not velocity is measured and wireless communication where 
only some components of the electric field are observed [18]).

In this work, we tackle the problem of retrieving a source in an incompressible fluid from 
local and incomplete velocity data, i.e. from local velocity with missing components. To our 
knowledge, there are no available results in this setting, while there are some related results for 
complete velocity measurements that can be found in [5, 12] that we will discuss below. We 
will only consider internal measurements, but we expect the ideas of this work to be a first step 
to consider non intrusive incomplete boundary data (see [14]), where the identification of the 
source is made from measurements of the normal or the tangential component of the velocity 
(or the force) on a subset of the boundary.

Let us describe more precisely our problem. Let Ω be a nonempty bounded connected open 
subset of RN  (N = 2 or N = 3) with smooth boundary Γ. Let T > 0 and let ω ⊂ Ω be an arbi-
trary nonempty subdomain. Given an initial data u0, we consider the following Stokes system:




ut − ν∆u +∇p = F(x, t) in Ω× (0, T),
∇ · u = 0 in Ω× (0, T),
u = 0 on Γ× (0, T),
u(·, 0) = u0 in Ω,

� (1.1)

where F(x, t) = f (x)σ(t) represents the source term of external forces causing the movement 
of the fluid and ν > 0 is the kinematic viscosity of the fluid. We assume f ∈ L2(Ω)N and 
σ ∈ L2(0, T). It is well known that if F ∈ L2(0, T; L2(Ω)N) and u0 ∈ V  (V and H defined 
below, see for instance [15]), then there exists a unique solution (u, p) for the system (1.1) 
such that u ∈ L2(0, T; H2(Ω)N ∩ V) ∩ H1(0, T; H) and p ∈ L2(0, T; H1(Ω) ∩ L2

0(Ω)), where

H := {u ∈ L2(Ω)N : ∇ · u = 0 in Ω, u · n = 0 on Γ},

V := {u ∈ H1
0(Ω)

N : ∇ · u = 0 in Ω}, L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

q = 0}

and n(x) is the outward unit normal vector to Ω at the point x ∈ Γ. Moreover, we will assume that 
σ ∈ W1,∞(0, T), in particular σ′ ∈ L2(0, T), so taking the time derivative in (1.1) we quickly 
obtain that u ∈ H1(0, T; H2(Ω)N ∩ V) ∩ H2(0, T; H) and p ∈ H1(0, T; H1(Ω) ∩ L2

0(Ω)) so for 
instance ut(T), ∆u(T) and ∇p(T) belong to L2(Ω).

From now on, we assume that u0 is known, and without loss of generality, we can assume 
that u0 = 0 by subtracting the homogeneous solution of (1.1) from the measurements.

Our goal is to obtain a reconstruction formula for the inverse problem of determining the 
source f (x) in the system (1.1) from local and incomplete velocity data. By local and incom-
plete velocity data we refer to the measurements of N − 1 components of the velocity field u 
and the acceleration field ut in an arbitrary subset ω ⊂ Ω during a time interval (0, T).

In the case of complete internal velocity measurements (i.e. all the components of the 
velocity are measured), in [5] the authors proved the Lipschitz stability for the inverse 
source problem in the linearized Navier–Stokes equations with data u|ω×(0,T) and u|{θ}×Ω 
where ω ⊂ Ω in an arbitrary subdomain and 0 < θ < T . In that case, the external force is 
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F = R(x, t) f (x), where R(x, t) is a known vector-valued function which satisfies some non-
degenaracy conditions and f (x) is unknown. The proof of the Lipschitz stability relies in 
global Carleman inequalities and the Bukhgeim–Klibanov method [3]. In [12] the authors con-
sidered an external force of the form F = f (x)σ(t), and they focus on recovering f from data 
u|ω×(0,T), p|ω×(0,T), u|{θ}×Ω, p|{θ}×Ω, where ω is an arbitrary subdomain and 0 < θ < T . 
The results in [12] are also based on global Carleman inequalities and the Bukhgeim–Klibanov 
method. In contrast with the aforementioned works, in this article we do not require the knowl-
edge of the pressure nor the knowledge of the velocity at some given time t = θ.

In the case of complete boundary measurements (i.e. all the components of the velocity 
or force are measured on the boundary), we also refer to the more recent work [14], where 
the author uses spectral analysis on an unsteady Stokes–Brinkman system in order to prove 
identification results for ( f , g), where f is the external source and g = ∇ · u is a compressible 
source term. The identification is obtained from several spectral measurements of the stress 
tensor on the whole boundary. Similarly as in the previously cited works [5, 14], in our case 
we can not expect to retrieve more than the divergence-free part of the source f by measuring 
only the velocity u.

In this study we use a spectral approach that links null-controllability and inverse source 
problems. This method was first developed for hyperbolic equations in [17] and then extended 
to parabolic equations in [9] and provides an explicit reconstruction formula for the source 
f (x) in terms of local measurements and null-controls. The main difference between the hyper-
bolic and the parabolic case is that in the first case, a single null-control is required to recover 
each component of the source, meanwhile, in the second case, a continuous family of null-
controls is required. Notice that in [10], also using the connection between null controllability 
and inverse problems, the authors study the conditional logarithmic stability for inverse source 
problems, and including the Stokes system, for a wide class of parabolic equations with regu-
lar sources and from complete internal or boundary measurements. Nevertheless, the proofs 
in [10] do not provide explicit reconstruction algorithms.

Our main results, theorems 3.1 and 3.3, provide a reconstruction formula of each Fourier 
coefficient of f through N − 1 components of local measurements of the solution u of sys-
tem (1.1). The reconstruction formula proposed in this work is essentially the same as the 
corresponding on for heat equation of [9] extended for the Stokes system. The novelties 
are that (a) the divergence-free part of the source f is retrieved from local velocity with 
missing components, without measuring the pressure; (b) instead of using the classical 
null-controllability results for evolution equations (see for instance [7, 8]), we have con-
sidered [6], where the authors obtain the null-controllability for the N-dimensional Stokes 
system with N − 1 scalar controls through Carleman inequalities. This fact allow us, by 
duality, to consider local measurements of the velocity with one missing component for 
the reconstruction and (c) numerically, in order to approximate a null-control with one 
vanishing component, it is necessary to penalize both the exact null final condition and the 
vanishing component of the controls and show the convergence of the regularized solutions 
(see [11, 13]).

The paper is organized as follows. In section 3 we first prove the uniqueness and recon-
struction results, theorems 3.1 and 3.3. Next, in section 4 we give a method to approximate 
null controls with one vanishing component and prove its convergence. Finally, in section 5 
we implement this method and present several numerical experiments that show the feasibility 
of the proposed reconstruction formula.
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2.  Preliminaries

Before starting with section 3, we recall some preliminary lemmas concerning the null con-
trollability of Stokes system using null controls with one vanishing component.

The following result was proved in [6] and establishes the null controllability for the 
N-dimensional Stokes system with one vanishing component for the control using Carleman 
inequalities.

Lemma 2.1.  Given τ ∈ (0, T], ω ⊂ Ω with nonempty interior and ϕ0 ∈ H , there exists a 
control h(τ) = h(τ)(ϕ0) ∈ L2(0, τ ; L2(Ω)N) with h(τ)

j ≡ 0 for some j ∈ {1, · · · , N}, such that 
the solution φ of the problem





−φt − ν∆φ+∇π = h(τ)1ω×[0,τ ] in Ω× (0, τ),
∇ · φ = 0 in Ω× (0, τ),
φ = 0 on Γ× (0, τ),
φ(·, τ) = ϕ0 in Ω,

� (2.2)

satisfies

φ(·, 0) = 0 in Ω.� (2.3)

Moreover, there exist constants C0 > 0 and C1 > 0 depending only on Ω and ω such that

‖h(τ)‖L2(0,T;L2(ω)N) � C0eC1/τ
9
‖ϕ0‖L2(Ω)N .� (2.4)

Remark 2.2.  The proof of lemma 2.1 is equivalent to the following observability inequal-
ity:

‖w(τ)‖2
L2(Ω)N � C0eC1/τ

9
N∑

i=1 i �=j

∫ τ

0

∫

ω

|wi|2dxdt,� (2.5)

where (w, q) is the solution of the adjoint system



wt − ν∆w +∇q = 0 in Ω× (0, τ),
∇ · w = 0 in Ω× (0, τ),
w = 0 on Γ× (0, τ),
w(·, 0) given in Ω.

� (2.6)

Finally, we recall technical results about the Volterra equations of first and second kind that 
we will need later on. For more details, the interested reader can see [9, 16, 17].

Lemma 2.3.  For 0 < t < τ < T , σ ∈ W1,∞(0, τ) and η ∈ L2(0, τ ; L2(Ω)N), there exists a 
unique

θ ∈ H1(0, τ ; L2(Ω)N)

satisfying for every i ∈ {1, . . . , N} the Volterra equation of the second kind

σ(0)∂tθi(x, t) +
∫ τ

t (σ(s − t)θi(x, s) + σ′(s − t)∂tθi(x, s))ds = ηi(x, t),
θi(x, τ) = 0.

� (2.7)
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Furthermore, there exists a constant C > 0 depending on ‖σ‖W1,∞(0,τ) such that

‖θ‖H1(0,τ ;L2(Ω)N) � C‖η‖L2(0,τ ;L2(Ω)N).� (2.8)

Lemma 2.4.  Assume σ ∈ W1,∞(Ω). We define the operator K : L2(0, T; L2(Ω))
→ H1(0, T; L2(Ω)) by

(Kv)(x, t) :=
∫ t

0
σ(s)v(x, t − s)ds.� (2.9)

There exists a positive constant C depending only on Ω, T  and ‖σ‖W1,∞(0,T) such that

C‖Kv‖H1(0,T;L2(Ω)N) � ‖v‖L2(Q)N � ‖Kv‖H1(0,T;L2(Ω)N).� (2.10)

Furthermore, the adjoint operator K∗ : H1(0, T; L2(Ω)) → L2(0, T; L2(Ω)) is given by

(K∗θ)(x, t) = σ(0)∂tθ(x, t) +
∫ T

t
(σ(s − t)θ(x, s) + σ′(s − t)∂tθ(x, t))ds.

�

(2.11)

3.  Uniqueness and reconstruction with one missing component

We now address the uniqueness and the reconstruction of the inverse source problem for the 
Stokes system (1.1) following the same ideas of [9]. The main differences with respect to [9] 
are the following: first of all, we have an N-dimensional system, second, we need to project 
into the H space in order to eliminate the pressure term and finally, we observe the velocity 
field with one missing component using a null control result with one vanishing component.

Notice that every f̃ ∈ L2(Ω)N can be decomposed as f̃ = ∇q + f , with q ∈ H1
0(Ω) and 

f ∈ H  (see [15]). So it is clear that the sources f̃  and f will produce the same velocity field in 
the Stokes system (1.1). Therefore, we can not retrieve the part of the source orthogonal to H 
only through velocity measurements. This is why we will always consider the H-projection of 
the source for the retrieval PHf  where PH  represents the orthogonal projector from L2(Ω)N  
onto H.

Our first result is given in the following theorem (analogous to theorem 1.3 in [9]).

Theorem 3.1.  Let σ ∈ W1,∞(0, T) with σ(T) �= 0. Given ϕ0 ∈ H , for each 0 < τ � T , let 

h(τ) = (h(τ)
j )N

j=1 be a null control associated to problem (2.2) extended by zero in (τ , T] with 

h(τ)
j ≡ 0 for some j ∈ {1, · · · , N}. Let θ(τ) be a solution of (2.7) for η = h(τ) extended by zero 

in (τ , T]. Then

(PH f ,ϕ0)L2(Ω)N = L+ C1 + C2,

where

L(ϕ0) = − ν
σ(T) (∆u(·, T),ϕ0)L2(Ω)N ,

C1 = − σ(0)
σ(T)

N∑
i=1 i�=j

(ui, θ
(T)
i )H1(0,T;L2(ω)),

C2 = − 1
σ(T)

N∑
i=1 i �=j

∫ T
0 σ′(T − s)(ui, θ

(τ)
i )H1(0,T;L2(ω))ds.

�

(3.12)

G C García et alInverse Problems 33 (2017) 105003
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Moreover, if σ′(t) = 0 for t ∈ (T − ε, T] for some ε > 0 or σ′(t) = e−C/(T−t)9
ρ(t) for all 

t ∈ (0, T), ρ ∈ L∞(0, T) for large C, then we obtain the stability inequality

‖PHf‖L2(Ω)N � C
(
‖∆u(·, T)‖L2(Ω)N +

N∑
i=1 i �=j

‖ui‖H1(0,T;L2(ω))

)
� (3.13)

with C ∼ O(eC1/ε
9
) and C1 is the constant appearing in (2.4).

Remark 3.2.  Notice that the reconstruction formula (3.12) involves a system of equa-
tions and one missing component of the velocity in the observatory ω × (0, T) since we con-
sider a family of exact controls h(τ) having one vanishing component. This is the main differ-
ence with the reconstruction formula presented in [9] for scalar parabolic equations.

Proof of theorem 3.1.  Using the operator K defined in lemma 2.4 it is easy to see that 
if (w, q) satisfies (2.6) with initial condition w(·, 0) = PHf  then ui = Kwi, i = 1, . . . , N and 
p = Kq satisfy (1.1) with F = PHf (x)σ(t). Evaluating the main equation (1.1) in T, using that 

ut(T) = σ(0)w(T) +
∫ T

0 σ′(T − s)w(x, s)ds, after multiplying by ϕ0 ∈ H  and integrating in 
space, we easily deduce that

σ(T)(PHf ,ϕ0)L2(Ω)N = σ(0)(w(·, T),ϕ0)L2(Ω)N − ν(∆u(·, T),ϕ0)L2(Ω)N

+
∫ T

0 σ′(T − s)(w(·, s),ϕ0)L2(Ω)N ds
� (3.14)

since

(∇p(·, T),ϕ0)L2(Ω)N = 0.

Next, observe that for all τ ∈ (0, T], the term (w(·, τ),ϕ0)L2(Ω)N can be evaluated by multiply-
ing the principal equation in (2.6) by φ, solution of the control system (2.2), and after using 
integration by parts in the domain Ω× (0, τ). Then, if h(τ) is extended by zero for τ < t < T  
we have

(w(·, τ),ϕ0)L2(Ω)N = −
N∑

i=1,i�=j

∫ T

0

∫

ω

wi(x, t)h(τ)i (x, t)dxdt.� (3.15)

On the other hand, from (2.7) and (2.11) we can consider the Volterra equations: 

K∗(θ
(τ)
i ) = h(τ)

i , i ∈ {1, . . . , N}, i �= j, where θ(τ)i (t) = 0 for τ � t � T . Then, by solving 
these problems and using u = Kw we obtain

(w(·, τ),ϕ0)L2(Ω)N = −
N∑

i=1,i �=j

(wi, K∗θ
(τ)
i )L2(0,T;L2(ω)) = −

N∑
i=1,i �=j

(ui, θ
(τ)
i )H1(0,T;L2(ω)).

Hence, applying the above identity in (3.14) for every ϕ0 ∈ H , we have

(PH f ,ϕ0)L2(Ω)N = − σ(0)
σ(T)

∑N
i=1,i�=j(ui, θ

(T)
i )H1(0,T;L2(ω)) − ν

σ(T) (∆u(·, T),ϕ0)L2(Ω)N

− 1
σ(T)

∑N
i=1,i�=j

∫ T
0 σ′(T − s)(ui, θ

(τ)
i )H1(0,T;L2(ω))ds.

�
(3.16)
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The stability result (3.13) is deduced following the same proof as in [9] theorem 1.3, from 
(2.4) and (2.8) since

‖θ(τ)‖H1(0,τ ;L2(Ω)N) � C‖h(τ)‖L2(0,τ ;L2(Ω)N) � CeC1/τ
9
‖ϕ0‖L2(Ω)N .

This completes the proof of theorem 3.1.� □ 

As in [9], notice that the information of ∆u(·, T) in Ω is not available in many applications, 
in fact, we will see that f can be recovered using information of ∆u(·, T), so formula (3.12) is 
not useful. If we only have access to the measurements in the observatory ω × (0, T), we can 
deduce the reconstruction formula of theorem 3.3.

Our second result is the following (analogous to theorem 1.6 in [9]).

Theorem 3.3.  Let f ∈ L2(Ω)N and let {(λk,ϕk)}k�0 be the eigenvalues and (L2)N -ortho-
normal eigenvectors of the Stokes operator in Ω with homogeneous Dirichlet boundary condi-
tions. Given σ ∈ W1,∞(0, T), σ(T) �= 0, such that

ak := 1 − νλk

σ(T)

∫ T

0
e−νλk(T−s)σ(s)ds �= 0,� (3.17)

for some k � 0, then we have the local reconstruction formula

(PHf )k = a−1
k (C1k + C2k),� (3.18)

where C1k = C1(ϕk), C2k = C2(ϕk) were defined in theorem 3.1, which only depend on the local 
observations of N − 1 components of the solution of (1.1).

Proof of theorem 3.3.  To prove the theorem 3.3 we introduce the eigenvalues and eigen-
vectors (λk,ϕk)k∈N of the Stokes operator in Ω as follows:

−∆ϕk +∇πk = λkϕk in Ω,
∇ · ϕk = 0 in Ω,

ϕk = 0 on Γ,
�

(3.19)

and we choose ϕk orthonormal in L2(Ω)N  such that the solution u of (1.1) has the representa-
tion

ui(x, t) =
∑
k∈N

αk(t)ϕik(x), ∀i = 1, . . . , N.

On the other hand, from (1.1) and (3.19) it is easy to check that the the coefficient αk(t) satis-
fies the following identity:

αk(t) = fk

∫ t

0
e−νλk(t−s)σ(s)ds,� (3.20)

where fk = ( f ,ϕk)L2(Ω)N  are the unknown coefficients of the source term f, which satisfies the 
divergence-free condition. Additionally, by integration by parts and using (3.19) and (3.20) 
we obtain

∫

Ω

∆u(x, T) · ϕk(x)dx = −λk(u(·, T),ϕk)L2(Ω)N = −λkαk(T).� (3.21)

G C García et alInverse Problems 33 (2017) 105003



8

Putting together (3.16), (3.20) and (3.21) we get

(PHf ,ϕk)L2(Ω)N := fk = −a−1
k

(
σ(0)σ(T)−1 ∑N

i=1,i�=j(ui, θ
(T)
i,k )H1(0,T;L2(ω))

+σ(T)−1 ∑N
i=1,i �=j

∫ T
0 σ′(T − s)(ui, θ

(s)
i,k )H1(0,T;L2(ω))ds

)
,

where ak was defined in (3.17). Thus the proof of theorem 3.3 is complete.� □ 

Remark 3.4.  In theorem 3.3, the reconstruction formula (3.18) is valid if the coefficient ak 
defined by (3.17) is not zero. This is true for instance for every k ∈ N in the following par
ticular cases of time dependency σ of the source (see [9]):

	 (a)	σ := σ0 constant.
	(b)	σ := σ1(t) a non-negative and increasing function.

	 (c)	σ := σ2(t) = 1 + 1
2 cos

(
4πt

T−ε

)
 for t < T − ε and σ2 = 3

2 for t > T − ε.

Notice that theorem 3.3 can be extended to the case in which a linear term d(t)u(x, t) is 
added to the main equation in (1.1), with d ∈ W1,∞(0, T). In fact, it is known that the observ-
ability inequality (2.5) is valid in the presence of this linear term in the controlled system 
(2.2) and the corresponding adjoint system (2.6). Thus, using the same scheme of the proof of 
theorem 3.3, it is easy to obtain the following corollary.

Corollary 3.5.  Under the hypothesis of theorem 3.3 and d ∈ W1,∞(0, T), if

ak := 1 − νλk

σ(T)

∫ T

0
e−νλk(T−s)+

∫ T
s d(y)dyσ(s)ds �= 0,

for some k � 0, then we have the local reconstruction formula

PHfk = a−1
k (C1k + C2k + C3k),

where PH  represents the orthogonal projector in L2(Ω)N  onto H, C1k = C1(ϕk), C2k = C2(ϕk) 
were defined in theorem 3.1 and

C3k := − d(T)
σ(T)

N∑
i=1,i�=j

∫ T

0
σ(T − s)(ui, θ

(τ)
i,k )H1(0,T;L2(ω))ds.

4.  Convergence of optimal to null controls with one vanishing component

In this section we will study the approximation of the null controllability problem mentioned 
in lemma 2.1 through a sequence of optimal control problems, by introducing relaxation 
parameters α > 0 and β > 0. Given τ ∈ (0, T], let us first characterize the control of minimal 
norm in L2(0, τ ; L2(Ω)N) by an optimal system. For ϕ0 ∈ H  and the index j ∈ {1, . . . , N} 
fixed, we consider the cost functional Jα,β defined by

Jα,β(h) :=
1
2

N∑
i=1,i�=j

∫ τ

0

∫

ω

|hi|2dxdt + β

∫ τ

0

∫

ω

|hj|2dxdt +
1

2α
‖φ(·, 0)‖2

L2(Ω)N ,
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where α and β are arbitrary positive numbers, which are associated respectively to the exact 
final condition φ(·, 0) = 0 (with φ the solution of (2.2) with ϕ0 for t = τ ) and the internal 
control with null jth component. Next, we consider the following optimal control problem:

min
h∈L2(0,τ ;L2(ω)N)

Jα,β(h).� (4.22)

In [9], the authors proved a similar result of optimal control for scalar parabolic equations. 
The novelty here is the additional parameter β.

Theorem 4.1.  The following statements hold:

	 (i)	For every α > 0 and for every β > 0 there exists a unique solution h = h(α,β) to (4.22) 
where h is characterized by the following optimality system:





−∂tφ− ν∆φ+∇π = h(τ)1ω×[0,τ ] in Ω× (0, τ),
∇ · φ = 0 in Ω× (0, τ),
φ = 0 on Γ× (0, τ),
φ(·, τ) = ϕ0 in Ω,

� (4.23)

		 and



∂tw − ν∆w +∇q = 0 in Ω× (0, τ),
∇ · w = 0 in Ω× (0, τ),
w = 0 on Γ× (0, τ),
w(·, 0) = 1

αφ(·, 0) in Ω,

� (4.24)

		 with

h(τ)i + wi = 0 in ω × (0, τ), ∀i = 1, . . . , N, i �= j,

βh(τ)j + wj = 0 in ω × (0, τ).
�

(4.25)

	(ii)	When β tends to infinity and α tends to zero, we have

{
− ν

σ(T) (∆u(·, T),ϕ0)L2(Ω)N − σ(0)
σ(T)

∑N
i=1,i�=j(ui, θ

(T)
i )H1(0,T;L2(ω))

− 1
σ(T)

∑N
i=1,i �=j

∫ T
0 σ′(T − s)(ui, θ

(τ)
i )H1(0,T;L2(ω))ds.

}
→ ( f ,ϕ0)L2(Ω)N ,

		 where θ(τ)i  is the solution of h(τ)
i = K∗θ

(τ)
i .

Proof of theorem 4.1.  The arguments are essentially based in [9, 11, 13], after consider-
ing the following differences:

	 (i)	it follows from [13] that problem (4.22) has a unique solution h(τ), which satisfies the 
optimality system (4.23)–(4.25).

	(ii)	From (4.23)–(4.25), it is easy to verify the identity:

∫ τ

0

∫

ω

(
N∑

i=1,i�=j

|h(τ)i |2 + β|h(τ)
j |2

)
dxdt +

1
α
‖φ(·, 0)‖2

L2(Ω)N

︸ ︷︷ ︸
I2

= (w(·, τ),ϕ0)L2(Ω)N .

�

(4.26)
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Applying Young’s inequality on the right-hand side of (4.26) and combining this with the 
observability inequality (2.5) we obtain

I2 �
a2

2
C0eC1/τ

9
N∑

i=1,i�=j

∫ τ

0

∫

ω

|wi|2 dx dt +
1

2a2 ‖ϕ0‖2
L2(Ω)N , a > 0.

Choosing a2 = C−1
0 e−C1/τ

9
 and using the optimal condition wi = −hi, ∀i = 1, . . . , N, i �= j , 

we can deduce that

∫ τ

0

∫

ω

(
N∑

i=1,i�=j

|h(τ)i |2 + 2β|h(τ)
j |2

)
dxdt +

2
α
‖φ(·, 0)‖2

L2(Ω)N � C0eC1/τ
9
‖ϕ0‖2

L2(Ω)N ,

� (4.27)

where C0, C1 are independent of α and β. Now, since h(τ)
i 1ω×(0,τ) is uniformly bounded in 

L2(0, τ ; L2(Ω)) for each i = 1, . . . , N, i �= j and ϕ0 ∈ H , it follows that the solution φ of sys-
tem (2.2) is uniformly bounded in C0([0, τ ]; H) (see [15], theorem 1.1, page 172). Then, for 
each n ∈ N we denote by φn the solution of system (2.2) associated to h(τ)

n  and consider 

ηi = h(τ)i,n  in (2.7). Thus, we can extract subsequences {h(τ)i,n′ }, {φn′}, and {θ(τ)i,n′ }, with αn′ → 0 
and βn′ → ∞ (recall that h depends on α and β), such that

h(τ)i,n′ ⇀ h(τ)i weakly in L2(0, τ ; L2(ω)), θ
(τ)
i,n′ ⇀ θ

(τ)
i weakly in H1(0, τ ; L2(Ω)),

and

φn′ ⇀ φ weakly in L2(0, τ ; V), ∂tφn′ ⇀ ∂tφ weakly in L2(0, τ ; V∗),

where V∗ is the dual space of V. Therefore, using compactness argument for Banach spaces 
(see [15], theorem 2.1, page 184) we deduce that

φn′(·, 0) → φ(·, 0) in H, n′ → +∞.� (4.28)

On the other hand, from (4.27) we have

β‖h(τ)j ‖2
L2(0,τ ;L2(ω)) � C0eC1/τ

9
‖ϕ0‖2

L2(Ω)N and ‖φn′(·, 0)‖L2(Ω)N → 0, n′ → ∞,

this implies that h(τ)
j  is uniformly bounded in L2(0, τ ; L2(ω)) and thanks to (4.28), φ(·, 0) = 0 

in Ω. Moreover, if β → +∞ then h(τ)
j → 0 in L2(0, τ ; L2(ω)). Finally, for fixed ϕ0 ∈ H  we 

find:
{
− ν

σ(T) (∆u(·, T),ϕ0)L2(Ω)N − σ(0)
σ(T)

∑N
i=1,i�=j(ui, θ

(T)
i,n′ )H1(0,T;L2(ω))

− 1
σ(T)

∑N
i=1,i�=j

∫ T
0 σ′(T − s)(ui, θ

(τ)
i,n′ )H1(0,T;L2(ω))ds

}
→ ( f ,ϕ0)L2(Ω)N ,

which concludes the proof of theorem 4.1.� □ 
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5.  Numerical source reconstruction

In this section we propose a two dimensional numerical algorithm of the reconstruction form
ula (3.18) established in theorem 3.3 that can be easily adapted to three or higher dimensions. 
The formula allows to reconstruct the H-projection of the unknown spatial dependency of the 
source f (x) for the Stokes system (1.1) from observations of one component of the velocity 
in a subdomain ω × (0, T). The objective is to test the feasibility of the formula for different 
choices of the known temporal dependency of the source σ(t) (see remark 3.4).

Notice that we have to solve several null controllability problems (see (2.2)) and Volterra 
integral equations  (2.11) in order to compute the projections of f ∈ L(Ω)2 on some given 
direction ϕk ∈ H . The numerical scheme to solve each Volterra equation  is the same as in 
[9]. On the other hand, the null-controls with one vanishing component are approximated by 
using the two-parameter optimal controls introduced in the previous section. More precisely, 
we implement the following algorithm:

Remark 5.1.  Taking into account (4.23), let us first introduce (ψ̄, π̄) and (ψ̂, π̂), the corre
sponding solutions of the following systems:





−∂tψ̄ − ν∆ψ̄ +∇π̄ = 0 in Ω× (0, τ),
∇ · ψ̄ = 0 in Ω× (0, τ),
ψ̄ = 0 on Γ× (0, τ),
ψ̄(·, τ) = ϕ0 in Ω,

� (5.29)

and



−∂tψ̂ − ν∆ψ̂ +∇π̂ = h(τ)1ω×[0,τ ] in Ω× (0, τ),
∇ · ψ̂ = 0 in Ω× (0, τ),
ψ̂ = 0 on Γ× (0, τ),
ψ̂(·, τ) = 0 in Ω.

� (5.30)

Now, let us consider the linear operators L : H → L2(0, τ ; L2(ω)2) and L∗ :
L2(0, τ ; L2(ω)2) → H  defined by

Lw(·, 0) := −w1ω×[0,τ ] and L∗h(τ) := −ψ̂(·, 0),

where w is the solution of (4.24) with initial condition w(·, 0) and ψ̂ is the solution of (5.30). 
Furthermore, we consider the linear operator Λ = L∗L : H → H  defined by

Λw(·, 0) := −I( j)
β ψ̂(·, 0),

for either j = 1 or j = 2, where

I(1)
β =

(
β 0
0 1

)
and I(2)

β =

(
1 0
0 β

)
.

Thus, the solution of the optimal control system (4.23)–(4.25) is given by the unique solution 
of:

Find w(·, 0) ∈ H such that (αI + I( j)
1/βΛ)w(·, 0) = ψ̄(·, 0).� (5.31)
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In the previous scheme, as we have already mentioned, the null exact final condition is 
penalized by α and the vanishing component of the control is penalized by the second param
eter β.

The finite dimensional version for the operator Λ is based on the time-space discretization 
of system (4.23)–(4.25). More precisely, we consider finite differences for the time discretiza-
tion and a mixed finite element formulation in space using P2-type elements for the velocity 
and P1-type elements for the pressure which the classical finite element spaces of piecewise 
polynomials (see e.g. [2, 11]).

For the sake of clarity, we list all the steps involved in the reconstruction algorithm:

	 •	compute the matrix associated to the operator Λ: in the jth column of the matrix we put 
the solution of (4.23)–(4.25) with the jth basis finite element function as initial condition.

	 •	Compute the first M eigenvalues and eigenvectors (λk.ϕk), k = 1, . . . , M , of the Stokes 
system (3.19).

	 •	For each eigenvector ϕk, compute the solution of (5.29) with initial condition ϕ0 = 
ϕk ∈ H . Next, given the parameters α,β  and ψ̄(·, 0) solve (5.31) to obtain w(·, 0).

	 •	In order to obtain the optimal control h(τ), solve (4.24) with initial condition w(·, 0), 
obtained from the previous step by considering (4.25), for each τ ∈ (0, T].

	 •	For each control h(τ), we compute the Volterra equation K∗θ(τ) = h(τ) (recall to see the 
discretization of (2.11) in [9]), to obtain θ(τ) for some discretized set τ ∈ (0, T].

	 •	Finally, use (3.18) to find the coefficients of the source PHf. This completes the applica-
tion of the reconstruction formula (3.18).

	 •	Apply, if needed, an extra optimization method (5.32). See the discussion below.

In practice, we observe that the numerical results obtained with the formula (3.18) allow 
us to detect with some accuracy the position of the source but not its amplitude. Therefore we 
implement an additional step consisting on a classical optimization algorithm that minimizes 
the fit between predicted and measured observations, but restricted to the frequencies associ-
ated to the significant coefficients found in the previous step. More precisely:

PHf̂ =
∑

k
ĉkfkϕk

ĉ = argminc∈RM′ , g(c)=
∑

k
ckfkϕk

‖um − u(g)‖2
H1(0,T;L2(ω)2) + µ‖g − PHf‖2

H ,

� (5.32)
where um are the given measurements, µ > 0 is some regularization parameter and PHf is the 
recovered source using the reconstruction formula (3.18) for 0 � k � M. In fact, we only 
optimize, starting from 1, the factors ck for which | fk| > ε, for some given threshold ε > 0 
(which are renumbered ck, k = 1, . . . , M′, with M′ � M).

For the numerical experiments we use the following data: we fix Ω = (0, 1)× (0, 1), 
T = 1, the mesh size for the finite difference method is h = 0.05 and the time step size is 
∆t = 5 × 10−3. We choose M = 38 as the maximum number of eigenfrequencies for which 
the minimum wavelength reached is around 0.25 = 5h. This number corresponds also to the 
maximum frequency for which the null controllability is effective, that is to say, the numerical 
control drives the solution to zero faster than in the situation of natural decay without control. 
The observation set ω is either (0, 1)× (0.3, 0.7) (centered) or (0, 1)× [(0, 0.1) ∪ (0.9, 1)] 
(near the boundary). The diffusion parameter is ν = 5 × 10−2 and the regularization param
eters are α = 5 × 10−3 and β = 15.

We consider a divergence-free unknown source of the form f = (−∂2g, ∂1g) (so PHf = f ), 
where g is a Gaussian function with small deviation (dipole type source) localized either at the 
top of the domain (single dipole) or at the top and bottom of the domain (double dipole) where 
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we have added an additional source with smaller deviation near the limit that can be still well 
represented with the selected number of eigenfunctions.

In figures 1–3 we show different examples of source reconstruction using the methodol-
ogy proposed in the present study. In all the cases the source is of the form f (x)σ(t), where 
f = ( f 1, f 2) is an unknown divergence-free function, and σ is the known time dependency 
σ = σ1(t) for an increasing type or σ = σ2(t) for an oscillating type (see remark 3.4). For 
the reconstructions, we only use measurements of a single component of the velocity, that 
is either u1 or u2 restricted in space to a local observatory (marked with a dashed line in the 
corresponding figures) and with 5% additive random noise. We first estimate the components 
f 1 and f 2 of the source using the null control reconstruction formula presented in (3.18) (sec-
ond and third columns in all the figures) and then use that first estimate as a first guess for the 
optimization algorithm (5.32) (last two columns), where only the previously non negligible 
coefficients are further adjusted. The relative error of each reconstruction is computed as the 
L2-norm of the difference between the original and the reconstructed source divided by the L2-
norm of the original source, in percentage. Additionally, the source spectrum corresponding 
to the examples of figures 1 and 3 are shown in figures 4 and 5.

In all the examples, the reconstruction before the optimization step is better by using meas-
urements of the first horizontal component of the velocity u1 than by using the second verti-
cal component u2. In the first case the location of the source is better established than in the 
second. In both cases the amplitude is underestimated, which is a consequence with the fact 
that the considered observatories are wider in the horizontal direction and the underestima-
tion of the amplitude is expected in such type of logarithmical ill-posed problems. In all the 
cases, the presence of higher random noise until 10% shows similar reconstructions. This is 
due to the fact that random noise is introduced as random perturbations in space at each node 

Figure 1.  Source reconstruction of a single located dipole source from measurements in 
a centered observatory (dashed line). The color scale is common for all the figures from 
−3 (blue) to 3 (red).
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Figure 2.  Source reconstruction of a double located dipole source from measurements 
in a centered observatory (dashed line).

Figure 3.  Source reconstruction of a double located dipole source from measurements 
in a near boundary observatory (dashed line).
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Figure 4.  Spectrum of the reconstructed source for the example of figure 1 from the 
first (left) or second (right) component of the velocity. Exact (dark circles), obtained 
from the reconstruction formula (3.18) (cross) and after optimization step (5.32) (white 
circles).

Figure 5.  Spectrum of the reconstructed source for the example of figure 3 from the 
first (left) or second (right) component of the velocity.
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of the mesh (for the measured velocity and acceleration), which is in fact a high frequency 
noise associated to the mesh size that is filtered as we work with the H-projection in the first M 
eigenfrequencies, i.e. the mesh wavelength 2h is smaller than minimum wavelength presented 
in the eigenfunctions which is around 5h as mentioned before.

In all the cases, the optimisation process allow us to improve the implitudes of the corre
sponding unknown sources in the case of u1 or u2 measurements and also the location of the 
source in the case of u2 measurements. Moreover, we can observe in each case a significative 
decrease the relative error. This is clear in figure 4 where the source spectrum of the example 
of figure 1 is shown. The optimization step allows to correct (generally by amplifying) the 
amplitudes of the first estimation of the spectral coefficients from the null-control recovery 
formula. This effect is more evident in the example of figure 2 in which the reconstruction 
formula does not allow to clearly distinguish the source of the bottom before the optimization 
step, but the high frequency coefficients associated with this second source are over the ε-
threshold and this allows to amplify them in the optimization step as is depicted in figure 5 and 
therefore enhance the reconstruction of this second source after optimization. Nevertheless, 
in some cases as is shown in figure 3, the optimization step could also amplify some spurious 
sources far away from the observatory.
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