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Abstract: In this paper, we prove Lipschitz stability results for the inverse source problem of determin-
ing the spatially varying factor in a source term in the Korteweg–de Vries–Burgers (KdVB) equation with
mixed boundary conditions. More precisely, the Lipschitz stability property is obtained using observa-
tion data on an arbitrary fixed sub-domain over a time interval. Secondly, we show that stability property
can also be achieved from boundary measurements. Our proofs relies on Carleman inequalities and the
Bukhgeim–Klibanov method.
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1 Introduction
From a physical point of view, the Korteweg–de Vries (KdV) equation describes the propagation of long water
waves in channels of shallowdepth, inwhich two phenomena are involved, dispersion (third-order term) and
nonlinear convection (nonlinear term). The interaction of these terms gives rise to awave traveling at constant
speedwithout losing its sharp, called soliton, [25, 27]. In somephysical context such as propagation of undu-
lar bores in shallowwater [21], fluids containinggasbubbles [33], plasmawaves [16], nonlinear circuit theory
and turbulence [13], a smoothing effect is also added into themodel andproduces a third phenomenon, dissi-
pation (second-order term). The resulting equation is called the Korteweg–de Vries–Burgers (KdVB) equation
[5, 25]. In our case, we consider the KdVB equation on a bounded domain with mixed boundary conditions,
namely,

{{{{{{
{{{{{{
{

yt + yxxx − yxx + yyx = F(x, t) in (0, L) × (0, T),
y(0, t) = y(L, t) = 0 in (0, T),

yx(L, t) = yx(0, t) on (0, T),
y( ⋅ , 0) = 0 in (0, L),

(1.1)

where y = y(x, t) represents the surface elevation of the water wave of quiescent depth at time (0, T) and
space (0, L) and F(x, t) is an internal force acting on water wave, which is interpreted as the spatial deriva-
tive of the bottom topography of the channel. In this paper, we investigate inverse problems in which we
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pretend to determine a spatial varying of bottom topography from either interior measurements or boundary
observations.

Assumptions on the source term F as well as well-posedness results concerning (1.1) will be specified
later. The main focus of this paper are theoretical stability results for the following inverse source problems.

Inverse source problems. Let ω ⊂⊂ (0, L) be a given nonempty sub-domain and 0 < t0 < T. Assume the
source term F(x, t) = f(x)R(x, t) in (1.1), where R is fixed and known, and let y satisfy (1.1).

Problem 1.1. Determine f(x) from interior observation data {y, yt}|ω×(0,T) or from boundary measurements
{y, yt}|{0,L}×(0,T). Here, {0, L} × (0, T) is equivalent to {(x, t) : x = 0, t ∈ (0, T)} ∪ {(x, t) : x = L, t ∈ (0, T)}.

Problem 1.2. Determine f(x) from observation data {y, yt , ytt}|ω×(0,T) and {y( ⋅ , t0)}|[0,L], or from measure-
ments {y, yt , ytt}|{0}×(0,T) and {y( ⋅ , t0)}|[0,L].

In the previous inverse problems, the source term f(x)R(x, t) is incompletely separated into its spatial and
temporal components, and we tackle the problem of determining the spatial component f . In presence of
a source termwhose decomposition is in the form of separation of variables, i.e., R is space-independent, the
term f(x)R(t) can act as the external force modeling a topography which is piecewise constant and has jumps
with time varying heights [3].

From a theoretical point of view, some methods for solving inverse source problems have been devel-
oped intensively for different kinds of PDEs. Roughly speaking, in elliptic or parabolic equations [9, 11],
hyperbolic equations [17, 20, 32], linearized Navier–Stokes system [8] and in a viscoelasticity model [26],
the proofs are based on Carleman estimates. A spectral approach for obtaining a source reconstruction for-
mula in hyperbolic equations [34], parabolic equations [15] and in the Stokes system [14] is carried out by
a control method and Volterra equations. A new strategy called mixed formulation is presented in [10, 28]
and applied to inverse source problems for linear hyperbolic and parabolic equations.

Inverse problems of recovering coefficients for KdV-type equations with Dirichlet and Neumann condi-
tions have been treated by means of optimal control tools and whose measurements are from the final state
data [30] or from boundary data [31]. Meanwhile, the determination of the principal coefficient is proved
in [2] by the Bukhgeim–Klibanov and Klibanov–Malinsky methods [4, 24], which are based on Carleman
estimates for the linearized system. Finally, we invite to the interested reader to see [18, 22, 23, 29] and
references therein for a complete description on inverse problems.

To the best of our knowledge, [3] is the only article which studies the inverse problem of retrieving the
external source in the KdVB equations with Dirichlet and Neumann boundary conditions. In [3], the authors
have used optimization techniques for proving the inverse source problem of recovering the time-varying
bottom topography, andwhere the spatial components f areDiracmeasures. Thus the inverse source problem
for the KdVB equationwithmixed boundary conditions has not been studied so far. The purpose of this paper
is to present the first stability and uniqueness theorems to inverse source problems such as Problem 1.1 and
Problem 1.2 through the Bukhgeim–Klibanov method. Our proofs are based on Carleman estimates, which
are different from the one obtained in [2, 6] for the KdV equation with Neumann boundary conditions and [7]
for KdVB equation with mixed boundary conditions. To be more specific, the difference with respect to [2, 6]
relies on the weight functions and boundary conditions. In contrast to [7], their Carleman estimate contains
weight functions, which are only time dependent and have just one local term on ω × (0, T). Indeed, it is not
possible to solve our Problem 1.1 using such an inequality; essentially, the weight functions appearing are
not the same in each term of the Carleman inequality, and therefore the Bukhgeim–Klibanov method could
not be applied.

Let us denote by y and ̃y the solutions to (1.1) for sources F1(x, t) = R(x, t)f1(x) and F2(x, t) = R(x, t)f2(x),
respectively. Additionally, in order to present our main results, we define some sets and impose several
assumptions.

Define the set

S = {F ∈ C([0, T];H3(0, L)) : Ft ∈ C([0, T]; L2(0, L)) ∩ L2(0, T;H2(0, L)),
Ftt ∈ L2(0, T;H−1(0, L))},
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and, for any s ≥ 0, let us define the space

Y s := C([0, T];Hs(0, L)) ∩ L2(0, T;Hs+1(0, L)).

(H1) The input data (y, ̃y)|ω×(0,T) and (y, ̃y)|[0,L]×{t0} are sufficiently smooth and bounded, i.e., there exists
a positive constant M1 such that

max{‖y‖W2,∞(0,T;W1,∞(0,L)), ‖ ̃y‖W2,∞(0,T;W1,∞(0,L))} ≤ M1. (1.2)

(H2) Assume the existence of positive constants r0 and M2. Consider the set

M(R, r0,M2) := {F ∈ S : R ∈ H1(0, T; L∞(0, L)), ‖R‖H1(0,T;L∞(0,L)) ≤ M2, |R(x, 0)| ≥ r0
and |F(x, 0)| = F(L − x, 0) for all x ∈ [0, L]}.

(H3) Let 0 < t0 < T, and let R(x, t) be a given fixed function satisfying

R( ⋅ , t0) ∈ C1([0, L]), ∂kt R ∈ L
∞((0, L) × (0, T)), k = 0, 1, 2.

Our first main result is given in the following theorem.

Theorem 1.3. Let (H1) and (H2) be satisfied.
(I) Then there exists a positive constant C = C(ω,M1,M2, R, r0, L, T) such that

‖f1 − f2‖L2(0,L) ≤ C‖y − ̃y‖H1(0,T;H2(ω)).

(II) Then there exists a positive constant C = C(M1,M2, R, r0, L, T) such that

‖f1 − f2‖L2(0,L) ≤ C(‖yx(L, t) − ̃yx(L, t)‖H1(0,T)

+ ‖yxx(L, t) − ̃yxx(L, t)‖H1(0,T)

+ ‖yxx(0, t) − ̃yxx(0, t)‖H1(0,T)).

Remark 1.4. Theorem 1.3 holds true if the space W2,∞(0, T;W1,∞(0, L)) on hypothesis (H1) is changed by
W1,∞(0, T;W1,∞(0, L)). However, inequality (1.2) is required in order to solve Problem 1.2.

Remark 1.5. Concerning (H2), a similar condition is assumed in [2] to study an inverse coefficient problem in
the KdV-type equation from boundary measurements. Indeed, our spatial anti-symmetry hypothesis on the
source F is a consequence of extending the solution of the KdVB equation to negative times. To omit such an
assumption will imply to take observations of the solution in a given time t0 > 0; see Theorem 1.6.

Our second main result is given in the following theorem.

Theorem 1.6. Let (H1) and (H3) be satisfied. Then there exist positive constants C1 = C1(L, T, t0,M1, ω) or
C2 = C2(L, T, t0,M1) such that, for every y, ̃y satisfying (1.1) for sources F1 = Rf1 and F2 = Rf2, respectively,

‖f1 − f2‖L2(0,L) ≤ C1(‖y − ̃y‖H2(0,T;H2(ω)) + ‖y( ⋅ , t0) − ̃y( ⋅ , t0)‖H3(0,L))

or

‖f1 − f2‖L2(0,L) ≤ C2(‖yx(0, ⋅ ) − ̃y(0, ⋅ )‖H2(0,T)

+ ‖yxx(0, ⋅ ) − ̃yxx(0, ⋅ )‖H2(0,T)

+ ‖y( ⋅ , t0) − ̃y( ⋅ , t0)‖H3(0,L)),

where y, ̃y ∈ Y9, yt , ̃yt ∈ Y6 and ytt , ̃ytt ∈ Y3,

The rest of this article is organized as follows. In Section 2, we prove regularity results to the KdVB equation
considered. In Section 3, one-parameter Carleman estimates for the linearized KdVB equation with mixed
boundary conditions are established. Section 4 is dedicated to prove Problem 1.1 (see Theorem 1.3) and
Problem 1.2 (see Theorem 1.6) using the Bukhgeim–Klibanov method.
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2 Preliminary results
In this section, we establish some regularity properties for the KdVB equation (1.1), which are required in
order to prove our inverse problems. The reader interested in studying the well-posedness for the KdVB equa-
tion on a bounded domain with different types of boundary conditions could review [1, 7, 19] and references
therein.

2.1 Linear problem

We consider the linear problem

{{{{{{
{{{{{{
{

yt + yxxx − yxx = F(x, t) in (0, L) × (0, T),
y(0, t) = y(L, t) = 0 in (0, T),

yx(L, t) = yx(0, t) on (0, T),
y( ⋅ , 0) = y0( ⋅ ) in (0, L).

(2.1)

Recently, Cerpa, Montoya and Zhang [7] proved a well-posedness result for a problem-type (2.1) in the
space Y s for s ∈ [0, 3]. We mention their result in the following lemma.

Lemma 2.1. For every s ∈ [0, 3], let (F, y0) ∈ L2(0, T;Hs−1(0, L)) × Hs(0, L)). Then (2.1) admits a unique solu-
tion y in the space Y s.

Furthermore, there exists a positive constant C such that

‖y‖Y s ≤ C(‖F‖L2(0,T;Hs−1(0,L)) + ‖y0‖Hs(0,L)).
The proof of Lemma 2.1 is based in semigroup theory and energy estimates for the Cauchy problem

yt + Ay = F, y(0) = y0,

where the operator A is defined by Au := −uxxx + uxx, and D(A) = {u ∈ H3(0, L) ∩ H1
0(0, L) : ux(0) = ux(L)}.

Now Lemma 2.1 will be used to obtain more regular solutions of (2.1).

Proposition 2.2. Assume y0 ∈ H6(0, L) ∩ D(A) and F ∈ S. Then the linear KdVB equation (2.1) has a unique
solution y ∈ C([0, T];H6(0, L)) with yt ∈ Y3 and ytt ∈ Y0.

Proof. Let z := ytt. From (2.1), it follows that z satisfies the system

{{{{{{
{{{{{{
{

zt + zxxx − zxx = Ftt in (0, L) × (0, T),
z(0, t) = z(L, t) = 0 in (0, T),

zx(L, t) = zx(0, t) on (0, T),
z( ⋅ , 0) = Ft( ⋅ , 0) + y0txx( ⋅ ) − y0txxx( ⋅ ) in (0, L).

(2.2)

By estimating z( ⋅ , 0) in L2(0, L) and using Lemma 2.1 on (2.2) with s = 0, we obtain

‖z( ⋅ , 0)‖L2(0,L) ≤ C(‖Ft‖C([0,T];L2(0,L)) + ‖y0t ‖H3(0,L)),
‖z‖Y0 ≤ C(‖Ftt‖L2(0,T;H−1(0,L)) + ‖z( ⋅ , 0)‖L2(0,L))
≤ C(‖Ftt‖L2(0,T;H−1(0,L)) + ‖Ft‖C([0,T];L2(0,L)) + ‖y0t ‖H3(0,L)).

Now we need to prove yt ∈ C([0, T];H3(0, L)). To do this, let u := yt. Analyzing in the same way the system
satisfied by u, we get

‖u‖Y3 ≤ C(‖Ft‖L2(0,T;H2(0,L)) + ‖u( ⋅ , 0)‖H3(0,L))

≤ C(‖Ft‖L2(0,T;H2(0,L)) + ‖F‖C([0,T];H3(0,L)) + ‖y0‖H6(0,L)).
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Finally, it is left to prove y ∈ C([0, T];H6(0, L)). From the continuous injection

H1(0, T;H4(0, L)) 󳨅→ C([0, T];H4(0, L)),

we see that y ∈ C([0, T];H4(0, L)). On the other hand, taking the main equation of (2.1), we have

‖yxxx‖C([0,T];H2(0,L)) ≤ C(‖F‖C([0,T];H3(0,L)) + ‖yt‖C([0,T];H2(0,L)) + ‖yxx‖C([0,T];H2(0,L)))

≤ C(‖Ft‖L2(0,T;H2(0,L)) + ‖F‖C([0,T];H3(0,L)) + ‖y0‖H6(0,L)).

Repeating the above arguments, we can obtain the inequality

‖yxxx‖C([0,T];H3(0,L)) ≤ C(‖F‖C([0,T];H3(0,L))∩H1(0,T;H2(0,L)) + ‖y0‖H6(0,L)).

This completes the proof of Proposition 2.2.

2.2 Nonlinear problem

In order to prove a similar result to Proposition 2.2 for the nonlinear system

{{{{{{
{{{{{{
{

yt + yxxx − yxx + yyx = F(x, t) in (0, L) × (0, T),
y(0, t) = y(L, t) = 0 in (0, T),

yx(L, t) = yx(0, t) on (0, T),
y( ⋅ , 0) = y0( ⋅ ) in (0, L),

(2.3)

we will use fixed-point arguments as well as small data. A well-posedness result of system (2.3) with F ≡ 0
can be found in [7]. More precisely, the authors of [7] have proved the following lemma.

Lemma 2.3. Assume s ∈ [0, 3]. Then, for every T > 0, there exists δ > 0 such that, for any y0 ∈ Hs(0, L) satis-
fying ‖y0‖Hs(0,L) ≤ δ, the nonlinear system

{{{{{{
{{{{{{
{

yt + yxxx − yxx + yyx = 0 in (0, L) × (0, T),
y(0, t) = y(L, t) = 0 in (0, T),

yx(L, t) = yx(0, t) on (0, T),
y( ⋅ , 0) = y0( ⋅ ) in (0, L)

admits a unique solution y in the space Y s.

The fixed-point scheme carried out in [7] can be easily adapted to system (2.3) in order to obtainmore regular
solutions, which are required to solve our inverse problems.

Let us introduce the space

A = {y ∈ C([0, T];H6(0, L)) : yt ∈ Y3, ytt ∈ Y0}.

Proposition 2.4. Assume y0 ∈ H6(0, L) ∩ D(A) and F ∈ S. Then, for every T > 0, there exists δ > 0 such that,
for any y0 and F satisfying

‖y0‖H3(0,L) + ‖F‖C([0,T];H3(0,L)) ≤ δ,

the nonlinear system (2.3) has a unique solution y in the spaceA.

Sketch of the proof. Let us consider the closed ball BR ⊂ A, where R > 0 is an appropriate radius to determine.
We define the map Λ : BR ⊂ A→ A byA(v) := y, and y satisfies the system

{{{{{{
{{{{{{
{

yt + yxxx − yxx = F(x, t) − vvx in (0, L) × (0, T),
y(0, t) = y(L, t) = 0 in (0, T),

yx(L, t) = yx(0, t) on (0, T),
y( ⋅ , 0) = y0( ⋅ ) in (0, L).
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Using the semigroup {S(t)}t≥0 associated to the operator A as well as Proposition 2.2, there exist positive
constants C1, C2 and C3 such that

‖Λ(v)‖A ≤ C1‖y0‖H3(0,L) + C2‖v‖2A + C3‖F‖C([0,T];H3(0,L)). (2.4)

Consider R > 0 such that, for any m0, n0 ≥ 2,

R = m0max{C1, C3}(‖y0‖H3(0,L) + ‖F‖C([0,T];H3(0,L))) and C2R ≤
1
2n0

.

Let δ = (2m0n0C2max{C1, C3})−1. From (2.4), we get ‖Λ(v)‖A ≤ R. Moreover, for every v, w ∈ BR, Λ is a con-
traction mapping on BR since

‖Λ(v) − Λ(w)‖A ≤ C4(‖v‖A + ‖w‖A)‖w − v‖A ≤
1
n0
‖v − w‖A.

Therefore, Λ has a unique fixed point w ∈ A, which is the solution of (2.3).

Remark 2.5. From the above results and interpolation arguments, it is possible to deduce the existence of
a unique solution y of (2.3) in W1,∞((0, T);W1,∞(0, L)). Recall that this regularity is required for solving
Problem 1.1; see Theorem 1.3.

On the other hand, the existence of a unique solution y of (2.3) in the space W2,∞((0, T);W1,∞(0, L))
(which is necessary for solving Problem 1.2, Theorem 1.6) can be obtained using the structure of the proof
of Proposition 2.2 and Proposition 2.4. We only mention the result, and therefore we omit the proof.

Proposition 2.6. Assume y0 ∈ H9(0, L) ∩ D(A) and F ∈ Y6. Then the nonlinear system (2.3) has a unique solu-
tion y in the space Y9. Furthermore, yt ∈ Y6, ytt ∈ Y3, yttt ∈ Y0 with

Ft ∈ Y3, Ftt ∈ C([0, T]; L2(0, L)) ∩ L2(0, T;H2(0, L)) and Fttt ∈ L2(0, T;H−1(0, L)),

respectively.

3 Carleman inequalities
In this section, two Carleman estimates for the linearized KdVB equation with constant coefficients on the
domain defined here by Q := (0, L) × (−T, T) will be proved. As mentioned in the introduction, few authors
have proved Carleman inequalities for the KdV and KdVB equations posed on a bounded interval (see [2, 6]
and [7], respectively). In this article, we tackle with mixed boundary conditions like in [7]. In order to apply
the Bukhgeim–Klibanovmethod for solving inverse problems, it is crucial to prove a one-parameter Carleman
estimate with the same exponential weight function in each integral term.

Concerning the inverse source problem with boundary observation data (see Theorem 1.3, case (II)),
a Carleman inequality with boundary terms on its right-hand side as well as equal exponential weight func-
tions in each term is necessary. It can be solved by adapting the Carleman estimate for the linearized KdV
equation proved in [2], which involves two parameters. However, we propose an alternative construction
using only one parameter since our inverse problem concerns the source and not the coefficients. In fact, it
implies different regularity conditions to the onespresented in [2],whichwere studied in theprevious section.

We also underline that the Carleman inequality given in Proposition 3.1 is different to the one established
in [7]. Namely, in this reference, a Carleman estimate containing only time-dependent weight functions and
one local term on ω × (0, T) is proved. Indeed, it is not possible to solve our inverse source problem using
such an inequality; essentially, the exponential weight functions appearing are not the same in each term,
and therefore the Bukhgeim–Klibanov method cannot be applied.

Let us consider the operator P given by

P := ∂t + ∂xxx − ∂xx + a(x, t)∂x + b(x, t), (3.1)

where a ∈ L∞(0, T;W1,∞(0, L)), b ∈ L∞(Q), and the space

E = {v ∈ L2(−T, T;H3(0, L) ∩ H1
0(0, L)) : Pv ∈ L2(Q)}. (3.2)
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3.1 Carleman estimate with local terms

Let ω be a nonempty open subset of (0, L), and let ϕ ∈ C4([0, L]) satisfy

ϕ > 0 in [0, L], ϕx(0) < 0, ϕx(L) > 0 (3.3)

and
ϕxx < 0 in (0, L)\ω, min

x∈ω̄=[ℓ1 ,ℓ2]
ϕ(x) = ϕ(ℓ2), max

x∈[0,L]
ϕ(x) = ϕ(L). (3.4)

Moreover, we consider the weight functions

α(x, t) := ϕ(x)ξ(t), ξ(t) := 1
(T + t)(T − t)

. (3.5)

An example of the weight function ϕ is the following: given ω = (ℓ1, ℓ2), we have

ϕ(x) =
{
{
{

εx3 − 3ℓ1x2 − x + C1 in [0, ℓ1],
−εx3 + (1 + 3εL2)x + C2 in [ℓ2, L],

where C1 = 2εL3 + L + C2, 0 < ε < 1 and C2 ≫ 1.
The first of our main results in this section is the following Carleman estimate.

Proposition 3.1. Let ϕ and ξ be defined by (3.5). There exist s0 > 0 and a positive constant C depending on
L, ω, T, ‖a‖L∞(0,T;W1,∞(0,L)), ‖b‖L∞(Q) and ‖ϕ‖C4[0,L] such that, for every s ≥ s0, for all y ∈ E defined by (3.2),
we have

∬
Q

[s5ξ5|y|2 + s3ξ3|yx|2 + sξ|yxx|2]e−2sα dx dt

+ s
T

∫
−T

ξ|yxx(0, t)|2e−2sα(0,t) + ξ|yxx(L, t)|2e−2sα(L,t) dt

≤ C(∬
Q

|Py|2e−2sα dx dt +∬
ω×(−T,T)

[(sξ)5|y|2 + s3ξ3|yx|2 + sξ|yxx|2]e−2sα dx dt). (3.6)

Proof of Proposition 3.1. The proof is divided in three steps: The first one is a classical setting; both decom-
position and change to an appropriate operator involving the weight functions (3.3)–(3.5) is considered. In
the second one, we will estimate global integrals using integration by parts. Finally, we will return to the
principal variable y for obtaining the desired inequality (3.6).

Step 1: Change of variable. In this step, we consider the differential operator satisfied by a new variable z,
which will be y up to a weight function. More precisely, for every y ∈ E and s > 0, we set z = e−sαy, and we
denote by L1 and L2 the skew-adjoint and self-adjoint parts of the operator P defined in (3.1), respectively.
Thus, if Fs = e−sαF, the identity e−sαP(esαz) = Fs is equivalently to

L1z + L2z = Fs + Rs ,

where
L1z := zt + zxxx + 3s2(αx)2zx ,
L2z := 3s(αx)zxx + s3(αx)3z + 3s(αxx)zx

and
Rs := s2(αx)2z + sαxxz + 2sαxzx + zxx

− [3s2αxαxx + sαxxx + (1 + a(x, t))sαx + sαt]z
− (1 + a(x, t))zx − b(x, t)z.

Thus we have
‖L1z‖2L2(Q) + ‖L2z‖

2
L2(Q) + 2⟨L1z, L2z⟩ = ‖Fs + Rs‖

2
L2(Q),

where ⟨ ⋅ , ⋅ ⟩ is the L2(Q) inner product. In the next step, we carry out several estimates for the terms that arise
of the inner product ⟨L1z, L2z⟩.
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8 | C.Montoya, Inverse source problems for the KdVB equation

Step 2: Estimates of global terms. In this step, we use several times integration by parts in order to develop
the nine terms appearing in ⟨L1z, L2z⟩. Then

I1,1 := ⟨L11z, L12z⟩ = 3s∬
Q

αxztzxx dx dt

= −3s∬
Q

αxxztzx dx dt +
3s
2 ∬

Q

αxt|zx|2 dx dt

= −3s∬
Q

ξϕxxztzx dx dt +
3s
2 ∬

Q

ξtϕx|zx|2 dx dt,

I1,2 := ⟨L11z, L22z⟩ = s3∬
Q

(αx)3ztz dx dt = −
3s3
2 ∬

Q

ξ2ξtϕ3
x |z|2 dx dt,

I1,3 := ⟨L11z, L32z⟩ = 3s∬
Q

αxxzxzt dx dt =
3s
2 ∬

Q

αxt|zx|2 dx dt − I1,1

=
3s
2 ∬

Q

ξtϕx|zx|2 dx dt − I1,1, (3.7)

I2,1 := ⟨L21z, L12z⟩ = 3s∬
Q

αxzxxzxxx dx dt

= −
3s
2 ∬

Q

ξϕxx|zxx|2 dx dt +
3s
2

T

∫
−T

(ξϕx|zxx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

. (3.8)

From (3.3), A ≥ 0. In fact, there exists a positive constant C = C(L, ‖ϕx‖L∞(0,L)) such that
A ≥ Cs

T

∫
−T

ξ(|zxx(0, t)|2 + |zxx(L, t)|2) dt.

We continue with the estimates and have

I2,2 := ⟨L21z, L22z⟩ = s3∬
Q

(αx)3zzxxx dx dt

= −3s3∬
Q

(αx)2αxxzzxx dx dt − s3∬
Q

(αx)3zxzxx dx dt

= 3s3∬
Q

[(αx)2αxx]xzzx dx dt + 3s3∬
Q

(αx)2αxx|zx|2 dx dt

+
s3

2 ∬
Q

[(αx)3]x|zx|2 dx dt −
s3

2

T

∫
−T

((αx)3|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
B

=
9s3
2 ∬

Q

(αx)2αxx|zx|2 dx dt −
3s3
2 ∬

Q

[(αx)2αxx]xx|z|2 dx dt − B, (3.9)

I2,3 := ⟨L21z, L32z⟩ = 3s∬
Q

αxxzxzxxx dx dt

= −3s∬
Q

αxxxzxzxx dx dt − 3s∬
Q

αxx|zxx|2 dx dt + 3s
T

∫
−T

(αxxzxzxx󵄨󵄨󵄨󵄨
x=L
x=0) dt

= −3s∬
Q

αxx|zxx|2 dx dt +
3s
2 ∬

Q

αxxxx|zx|2 dx dt + C̃
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C. Montoya, Inverse source problems for the KdVB equation | 9

= −3s∬
Q

ξϕxx|zxx|2 dx dt +
3s
2 ∬

Q

ξϕxxxx|zx|2 dx dt + C̃, (3.10)

where

C̃ := 3s
T

∫
−T

(ξϕxxzxzxx󵄨󵄨󵄨󵄨
x=L
x=0) dt −

3s
2

T

∫
−T

(ξϕxxx|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt. (3.11)

The last estimates are obtained as follows:

I3,1 := ⟨L31z, L
1
2z⟩ = 9s3∬

Q

(αx)3zxzxx dx dt

= −
9s3
2 ∬

Q

[(αx)3]x|zx|2 dx dt +
9s3
2

T

∫
−T

((αx)3|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

= −
27s3
2 ∬

Q

(αx)2αxx|zx|2 dx dt +
9s3
2

T

∫
−T

((αx)3|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
D

. (3.12)

Using (3.3), (3.9) and (3.12), we deduce that D − B = 4B ≥ 0. Thus there exists a positive constant

C = C(L, ‖ϕx‖L∞(0,L)) such that D − B ≥ Cs3
T

∫
−T

ξ3[|zx(L, t)|2 + |zx(0, t)|2] dt.

Besides,

I3,2 := ⟨L31z, L
2
2z⟩ = 3s5∬

Q

(αx)5zzx dx dt

= −
3s5
2 ∬

Q

[(αx)5]x|z|2 dx dt = −
15s5
2 ∬

Q

ξ5(ϕx)4ϕxx|z|2 dx dt.

Taking into account that ϕxx < 0 in (0, L)\ω (see (3.4)), we can estimate I3,2 by

Cs5∬
Q

ξ5|z|2 dx dt − Cs5∬
ω×(−T,T)

ξ5|z|2 dx dt ≤ −15s
5

2 ∬
Q

ξ5(ϕx)4ϕxx|z|2 dx dt

for any s ≥ C(L, ω, T, ‖ϕxx‖L∞(0,L)).
Finally,

I3,3 := ⟨L31z, L
3
2z⟩ = 9s

3∬
Q

(αx)2αxx|zx|2 dx dt = 9s3∬
Q

ξ3(ϕx)2ϕxx|zx|2 dx dt.

Now we denote by I2,11 and I2,31 the first terms of (3.8) and (3.10), respectively. Thus, using again condi-
tion (3.4), for any s ≥ C(L, ω, T, ‖ϕxx‖L∞(0,L)), we have

I2,11 + I
2,3
1 = −

9s
2 ∬

Q

ξϕxx|zxx|2 dx dt ≥ Cs∬
Q

ξ|zxx|2 dx dt − Cs∬
ω×(−T,T)

ξ|zxx|2 dx dt.

If I2,21 and I3,11 denote the first terms of I2,2 and I3,1, respectively, then

I2,21 + I
3,1
1 + I

3,3 = 0.

Additionally, the second term of I2,3, denoted by I2,32 , can be upper bounded (after integrating by parts and
using Young’s inequality) by

I2,32 ≤ Cs
3∬
Q

ξ3|zx|2 dx dt ≤ ∬
Q

(s5ξ5|z|2 + sξ|zxx|2) dx dt (3.13)

for any s ≥ C(L, ω, T, ‖ϕ‖C4[0,L]).
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10 | C.Montoya, Inverse source problems for the KdVB equation

As a consequence of (3.13), the first term in (3.7) as well as the second term in (3.10) can be estimated
by the left-hand side of (3.13). By considering the constant C̃ defined in (3.11), at this moment, for any
s ≥ C(L, ω, T, ‖ϕ‖C4[0,L]), we can deduce the inequality

∬
Q

[s5ξ5|z|2 + s3ξ3|zx|2 + sξ|zxx|2] dx dt + s
T

∫
−T

ξ(|zxx(0, t)|2 + |zxx(L, t)|2) dt

+ s3
T

∫
−T

ξ3[|zx(L, t)|2 + |zx(0, t)|2] dt + C̃

≤ C(‖Fs‖2L2(Q) + ‖Rs‖
2
L2(Q) +∬

ω×(−T,T)

[s5ξ5|z|2 + sξ|zxx|2] dx dt).

Finally, we shall estimate C̃. Indeed,

|C̃| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
3s

T

∫
−T

ξ[ϕxx(L, t)zx(L, t)zxx(L, t) − ϕxx(0, t)zx(0, t)zxx(0, t)] dt

−
3s
2

T

∫
−T

ξ[ϕxxx(L, t)|zx(L, t)|2 − ϕxxx(0, t)|zx(0, t)|2] dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Cs2
T

∫
−T

ξ[|zx(L, t)|2 + |zx(0, t)|2] dt + C
T

∫
−T

ξ(|zxx(0, t)|2 + |zxx(L, t)|2) dt.

Hence there exists a constant C depending on L, ω, T,‖ϕ‖C4[0,L], b ∈ L∞(Q) and ‖a‖L∞(0,T;W1,∞(0,L)) such that,
for any s ≥ C,

∬
Q

(s5ξ5|z|2 + s3ξ3|zx|2 + sξ|zxx|2) dx dt + s
T

∫
−T

ξ(|zxx(0, t)|2 + |zxx(L, t)|2) dt

+ s3
T

∫
−T

ξ3(|zx(L, t)|2 + |zx(0, t)|2) dt

≤ C(∬
Q

|F|e−2sα dx dt +∬
ω×(−T,T)

(s5ξ5|z|2 + sξ|zxx|2) dx dt). (3.14)

Step3: Return to themain variable. In this step,we turnback to our original function for obtaining thedesired
inequality (3.6). Taking into account that our change of variable was given by y = esαz, a direct computation
allow us to get

|yx|2e−2sα ≤ C(s2ξ2|z|2 + |zx|2),
|yxx|2e−2sα ≤ C(s4ξ4|z|2 + s2ξ2|zx|2 + |zxx|2).

On the other hand,
|zxx|2 ≤ Ce−2sα(s4ξ4|y|2 + s2ξ2|yx|2 + |yxx|2)

Finally, substituting the previous estimates into (3.14) yields inequality (3.6). This completes the proof of
Proposition 3.1.

3.2 Carleman estimate with boundary terms

In order to prove the Lipschitz stability from boundary measurements, we first proof a global Carleman
inequality for the linearized KdVB equation with boundary terms at x = 0. The Carleman estimate will be
developed using the scheme of the previous subsection.

Brought to you by | Universidad Tecnica Federico Santa Maria
Authenticated | cristhian.montoya@usm.cl author's copy

Download Date | 4/10/19 2:34 PM



C. Montoya, Inverse source problems for the KdVB equation | 11

Let ψ ∈ C4[0, L] satisfy
ψ > 0 in [0, L], (3.15)

ψxx < 0 in [0, L], (3.16)
ψx(L) > 0, ψx(0) > 0. (3.17)

Moreover, we consider the weight functions

β(x, t) := ψ(x)ξ(t), ξ(t) := 1
(T + t)(T − t)

. (3.18)

It is very easy to verify that, for every a > 0, ψ(x) = ax3 − 4aLx2 + 6aL2x + d satisfies (3.16) and (3.17);
meanwhile, (3.15) holds for d ≫ 1.

The second main result of this section is the following Carleman estimate.

Proposition 3.2. Let β and ξ be defined by (3.15)–(3.18). There exist s0 > 0 and a positive constant C depend-
ing on L ,T, ‖a‖L∞(0,T;W1,∞(0,L)), ‖b‖L∞(Q) and ‖ψ‖C4[0,L] such that, for every s ≥ s0, for all y ∈ E defined by (3.2),
we have

∬
Q

[s5ξ5|y|2 + s3ξ3|yx|2 + sξ|yxx|2]e−2sβ dx dt

≤ C(∬
Q

|Py|2e−2sβ dx dt +
T

∫
−T

[s3ξ3|yx(0, t)|2 + sξ|yxx(0, t)|2]e−2sβ(0,t) dt). (3.19)

Sketch of proof. We follow closely the proof of Proposition 3.1. Thus, from the change of variable z = e−sβy
and Fs = e−sβPy, we have again ‖L1z‖2L2(Q) + ‖L2z‖

2
L2(Q) + 2⟨L1z, L2z⟩ = ‖Fs + Rs‖

2
L2(Q), where L1, L2, Rs are

defined like in step 1 of the proof of Proposition 3.1, but considering β instead of α. Now, from step 2 of the
proof of Proposition 3.1, we can deduce the inequality

−
9s
2 ∬

Q

ξψxx|zxx|2 dx dt −
15s5
2 ∬

Q

ξ5(ψx)4ψxx|z|2 dx dt

+
3s
2 ∬

Q

ξψxxxx|zx|2 dx dt +
3s
2

T

∫
−T

ξψx|zxx|2󵄨󵄨󵄨󵄨
x=L
x=0 dt + 4s

3
T

∫
−T

(ψxξ)3|zx|2󵄨󵄨󵄨󵄨
x=L
x=0 dt

+ 3s
T

∫
−T

(ξψxxzxzxx󵄨󵄨󵄨󵄨
x=L
x=0) dt −

3s
2

T

∫
−T

(ξψxxx|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

≤ 2(‖Fs‖2L2(Q) + ‖Rs‖
2
L2(Q)).

On the other hand, using condition (3.16), we can estimate the third term on the left-hand side of the pre-
vious inequality like in (3.13) for all s ≥ C, where C = C(L, T, ‖ψ‖C4[0,L]). Then there exists a positive constant
C only depending on L, T,‖ψ‖C4[0,L] such that, for any s ≥ C,

∬
Q

[s5ξ5|z|2 + s3ξ3|zx|2 + sξ|zxx|2] dx dt

+
3s
2

T

∫
−T

ξ(t)(ψx(L)|zxx(L, t)|2 − ψx(0)|zxx(0, t)|2) dt

+ 4s3
T

∫
−T

ξ3(t)(ψ3
x(L)|zx(L, t)|2 − ψ3

x(0)|zx(0, t)|2) dt

+ 3s
T

∫
−T

(ξψxxzxzxx󵄨󵄨󵄨󵄨
x=L
x=0) dt −

3s
2

T

∫
−T

(ξψxxx|zx|2󵄨󵄨󵄨󵄨
x=L
x=0) dt

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
J(zx ,zxx)

≤ C(‖Fs‖2L2(Q) + ‖Rs‖
2
L2(Q)). (3.20)
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12 | C.Montoya, Inverse source problems for the KdVB equation

Now, using condition (3.17) in (3.20), for any s ≥ C, we can deduce

∬
Q

[s5ξ5|z|2 + s3ξ3|zx|2 + sξ|zxx|2] dx dt + s
T

∫
−T

ξ(t)ψx(L)|zxx(L, t)|2 dt

+ s3
T

∫
−T

ξ3(t)ψ3
x(L)|zx(L, t)|2 dt + J(zx , zxx)

≤ C(s3
T

∫
−T

ξ3(t)|zx(0, t)|2 dt + s
T

∫
−T

ξ(t)|zxx(0, t)|2 dt + ‖Fs‖2L2(Q) + ‖Rs‖
2
L2(Q)). (3.21)

Applying the Cauchy–Schwartz inequality, J(zx , zxx) can be upper estimated by the boundary terms asso-
ciated to |zx(0, ⋅ )|, |zxx(0, ⋅ )| in the right-hand side of (3.21) and by the terms |zx(L, ⋅ )|, |zxx(L, ⋅ )| in the
left-hand side of (3.21). This completes the sketch of proof of Proposition 3.2.

Remark 3.3. A result similar to Proposition 3.2 with boundary terms at x = L can be obtained if the signs of
ψx given in (3.17) are changed. This new proposition will be equivalent to [2, Theorem 2.2], but involving
only one parameter.

4 Inverse problems
This section contains the proof of Lipschitz stability results stated in Theorem 1.3 and Theorem 1.6 con-
cerning inverse problems of recovering the source F(x, t) = R(x, t)f(x) in equation (1.1), either from interior
observation data or boundary observation data of the solution. As mention before, the proof relies upon the
Bukhgeim–Klibanov method.

Step 1: Auxiliary system. First of all, we consider two external sources F1 = Rf1, F2 = Rf2 and the corre-
sponding solutions to (1.1), y and ̃y, respectively.

Let us define u(x, t) := y(x, t) − ̃y(x, t) and G(x, t) = R(x, t)(f1(x) − f2(x)). It follows that u satisfies the
system

{{{{{{
{{{{{{
{

ut + uxxx − uxx + ̃yux + yxu = G(x, t) in (0, L) × (0, T),
u(0, t) = u(L, t) = 0 in (0, T),

ux(L, t) = ux(0, t) on (0, T),
u( ⋅ , 0) = 0 in (0, L).

(4.1)

In order to apply the Bukhgeim–Klibanov method, we consider z := ut, which satisfies

{{{{{{
{{{{{{
{

zt + zxxx − zxx + ̃yzx + yxz = G̃(x, t) in (0, L) × (0, T),
z(0, t) = z(L, t) = 0 in (0, T),

zx(L, t) = zx(0, t) on (0, T),
z( ⋅ , 0) = G( ⋅ , 0) in (0, L),

(4.2)

where G̃(x, t) = Gt(x, t) − ̃ytux − yxtu.
Observe that f1, f2 appears not only in the source term of (4.2), but also in the initial condition. In addi-

tion, although theCarlemanestimate (3.6) is independent of initial data (seeProposition3.1),we shall extend
system (4.2) to negative times in order to use such a Carleman inequality.

Step 2: Extension to negative time. Nowwe extend the systems (4.1) in u and (4.2) in z to negative times. To
do this, we define the symmetric extension of any function g defined on [0, L] × [0, T] by

gee(x, t) :=
{
{
{

g(x, t) in [0, L] × [0, T],
g(L − x, −t) in [0, L] × [−T, 0).
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In a similar way, we define the anti-symmetric extension to [0, L] × [−T, T] of any function g defined on
[0, L] × [0, T] by

gae(x, t) :=
{
{
{

g(x, t) in [0, L] × [0, T],
−g(L − x, −t) in [0, L] × [−T, 0).

One should observe that this extension satisfies gee1 g
ee
2 = (g1g2)ee. Besides, any idea of extending the solu-

tion z of (4.2) to negative times is closely linked to extend the solutions y, ̃y of (1.1) to negative times and
assume that the initial data z( ⋅ , 0) satisfies |z(x, 0)| = z(L − x, 0) for all x ∈ [0, L], that is,

|R(x, 0)| |f1(x) − f2(x)| = R(L − x, 0)(f1(L − x) − f2(L − x)) for all x ∈ [0, L].

Thus, without loss of generality, we define the symmetric extension of the solution y (resp. ̃y) of (1.1) to
negative times. Let v := zee on [0, L] × [−T, T]. It is easy to verify that v satisfies the system

{{{{{{
{{{{{{
{

vt + vxxx − vxx + ̃yeevx + yeex v = ̃Gae(x, t) in [0, L] × [−T, T],
v(0, t) = v(L, t) = 0 in (0, T),

vx(L, t) = vx(0, t) on (−T, T),
v( ⋅ , 0) = G( ⋅ , 0) in (0, L).

(4.3)

The main equation of (4.3) is eligible for the Carleman estimates of Proposition 3.1 and Proposition 3.2
with a(x, t) = ̃yee and b(x, t) = yeex . Moreover, the regularity over the functions a and b is fulfilled thanks
to Proposition 2.4.

4.1 Internal measurements

Proof of Theorem 1.3, case (I). From step 1 of the proof of Proposition 3.1, let us define w := e−sαv satisfy-
ing L1w = wt + wxxx + 3s2(αx)2wx and w(0, t) = w(L, t) = 0, w( ⋅ , ±T) = 0 in (0, L). Thus, if we multiply the
expression L1w by w and integrate it over (0, L) × (−T, 0), we have

J :=
0

∫
−T

L

∫
0

wL1w dx dt =
0

∫
−T

L

∫
0

w(wt + wxxx + 3s2(αx)2wx) dx dt

=
1
2

L

∫
0

|w(x, 0)|2 dx − (
0

∫
−T

L

∫
0

wxwxx dx dt + 3s2
0

∫
−T

L

∫
0

ϕxϕxxξ2|w|2 dx dt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

H

).

Using ϕ ∈ C4([0, L]) and the Cauchy–Schwartz inequality, we have

|H| ≤ C
T

∫
−T

L

∫
0

(s2ξ2|w|2 + |wx|2 + |wxx|2) dx dt,

where C is a positive constant independent of F and w(x, 0). Estimating the term sJ by Carleman inequality
(3.6), by choosing s0 large enough, the term |H| can be absorbed by the left-hand side of (3.6). Therefore, the
associated term to |w(x, 0)|2 can be estimated by

s
L

∫
0

|w(x, 0)|2 dx ≤ 2s2
T

∫
−T

L

∫
0

|w|2 dx dt + 2
0

∫
−T

L

∫
0

|L1w|2 dx dt + 2s|H|

≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sα dx dt +∬
ω×(−T,T)

(s5ξ5|w|2 + sξ|wxx|2) dx dt),

where C is a positive constant independent of F.
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Using the fact that α is even in time and w = e−sαv = e−sαzee, there exists a positive constant C indepen-
dent of F such that

s
L

∫
0

|G(x, 0)|2e−2sα(x,0) dx

≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sα dx dt +∬
ω×(−T,T)

s5ξ5|zee|2e−2sα(x,t) dx dt +∬
ω×(−T,T)

(s3ξ3|zeex |2 + sξ|zeexx|2)e−2sα dx dt)

≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sα dx dt +
T

∫
0

∫
ω

s5ξ5|z(x, t)|2e−2sα(x,t) dx dt

+
T

∫
0

∫
ω

s5ξ5|z(L − x, t)|2e−2sα(L−x,t) dx dt

+
T

∫
0

∫
ω

s3ξ3(|zx(x, t)|2e−2sα(x,t) + |zx(L − x, t)|2e−2sα(L−x,t)) dx dt

+
T

∫
0

∫
ω

sξ(|zxx(x, t)|2e−2sα(x,t) + |zxx(L − x, t)|2e−2sα(L−x,t)) dx dt). (4.4)

On the other hand, using the definition of G̃ae and hypothesis (H2), the fact that α, ξ are even in time, and
̃yt , yxt ∈ L∞((0, L) × (0, T)) (see hypothesis (H1)), there exists a positive constant C = C(L, T,M1,M2) such
that

T

∫
−T

L

∫
0

|G̃ae|2e−2sα dx dt ≤
T

∫
0

L

∫
0

|Gt(x, t) − ̃ytux − yxtu|2(e−2sα(x,t) + e−2sα(L−x,t)) dx dt

≤ C
T

∫
0

L

∫
0

|Gt(x, t)|2(e−2sα(x,0) + e−2sα(L−x,0)) dx dt

+ C
T

∫
0

L

∫
0

(|u|2 + |ux|2)(e−2sα(x,t) + e−2sα(L−x,t)) dx dt

≤ C
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + C
T

∫
−T

L

∫
0

(|uee|2 + |ueex |2)e−2sα(x,t) dx dt. (4.5)

Thus, if Iω×(0,T)(z) denotes the local terms in the right-hand side of (4.4), then, from (4.4) and (4.5), we get

s
L

∫
0

|G(x, 0)|2e−2sα(x,0) dx ≤ C
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + CIω×(0,T)(z)

+ C
T

∫
−T

L

∫
0

(|uee|2 + |ueex |2)e−2sα(x,t) dx dt. (4.6)

Finally, in order to obtain the firstmain result of this paper,we need to estimate the last termon the right-hand
side of (4.6). To do this, we apply the Carleman inequality given in Proposition 3.1 to the equation satisfied
by uee, which is the extension of (4.1) to negative times with a(x, t) = ̃yee and b(x, t) = yeex . Thus we have

T

∫
−T

L

∫
0

(|uee|2 + |ueex |2)e−2sα(x,t) dx dt ≤ C(
T

∫
−T

L

∫
0

|Gae|2e−2sα dx dt + ∬
ω×(−T,T)

(sξ)5|uee|2e−2sα dx dt

+∬
ω×(−T,T)

(s3ξ3|ueex |2 + sξ|ueexx|2)e−2sα dx dt)

≤ C(
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + Iω×(0,T)(u)). (4.7)
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Putting together (4.6) and (4.7), we obtain

s
L

∫
0

|G(x, 0)|2e−2sα(x,0) dx ≤ C
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + CIω×(0,T)(u) + +CIω×(0,T)(z). (4.8)

The first result of Theorem 1.3 follows from (4.8) and assumption (H3).

4.2 Boundary measurements

Proof of Theorem 1.3, case (II). We apply the above scheme, although using the weight functions ψ, ξ, β
defined in (3.15)–(3.18) as well as the Carleman inequality with boundary terms, Proposition 3.2. Thus
there exists a positive constant C independent of F such that

s
L

∫
0

|w(x, 0)|2 dx ≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sβ dx dt +
T

∫
−T

[s3ξ3|wx(0, t)|2 + sξ|wxx(0, t)|2] dt),

where w := e−sβv satisfies L1w = wt + wxxx + 3s2(βx)2wx as well as w(0, t) = w(L, t) = 0, w( ⋅ , ±T) = 0 in
(0, L), and v := ze satisfies system (4.3).

Replacing w := e−sβv = e−sβze and using the boundary conditions of z given in (4.2), we can deduce

s
L

∫
0

|G(x, 0)|2e−2sβ(x,0) dx ≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sβ dx dt +
T

∫
−T

[s3ξ3|zeex (0, t)|2 + sξ|zeexx(0, t)|2]e−2sβ(0,t) dt)

≤ C(
T

∫
−T

L

∫
0

|G̃ae|2e−2sβ dx dt + Ibo(z)),

where

Ibo(z) :=
T

∫
0

[s3ξ3|zx(L, t)|2 + sξ(|zxx(0, t)|2 + |zxx(L, t)|2)]e−2sβ(0,t) dt.

Note that estimate (4.5) associated to the source term |G̃ae|2 is independent to the type of observation,
and therefore we can use it. Hence there exists a positive C such that

s
L

∫
0

|G(x, 0)|2e−2sβ(x,0) dx ≤ C
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + CIbo(z) + C
T

∫
−T

L

∫
0

(|ue|2 + |uex|2)e−2sβ(x,t) dx dt

≤ C
L

∫
0

|f1(x) − f2(x)|2e−2sα(x,0) dx + CIbo(u) + CIbo(z).

Observe that the last estimate was obtained using the Carleman estimate with boundary term (3.19), Propo-
sition 3.2, to the equation satisfied by uee, which is the extension of (4.1) to negative times with a(x, t) = ̃ye
and b(x, t) = yex.

Finally, (H2) allows to finish the proof of the second case of Theorem 1.3.

4.3 Measurements at a fixed time

The Lipschitz stability result given in Theorem 1.6 is proved in this subsection via Carleman estimates and
employing the method developed in [8, 12] for the Navier–Stokes and Boussinesq systems, respectively. It is
worthwhile to highlight that Proposition 3.1 and Proposition 3.2 hold true over [0, L] × (0, T) by replacing
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the weight functions (3.5) and (3.18) by α(x, t) = ϕ(x)ζ(t) and β(x, t) = ψ(x)ζ(t), respectively, where

ζ(t) = 1
ℓ(t)

and ℓ(t) =
{{{
{{{
{

t, 0 ≤ t ≤ T4 ,
T − t, 3T

4 ≤ t ≤ T,
ℓ(t0) > ℓ(t) > 0, t ∈ (0, t0) ∪ (t0, T).

(4.9)

Henceforth, let us denote

Llocal,t0 (u) = ‖u‖H2(0,T;H2(ω)) + ‖u( ⋅ , t0)‖H3(0,L),
Lbo,t0 (u) = ‖ux(0, ⋅ )‖H2(0,T) + ‖uxx(0, ⋅ )‖H2(0,T) + ‖u( ⋅ , t0)‖H3(0,L).

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. (i) From systems (4.1) and (4.2) defined in step 1, let w := zt = utt satisfy

{{{{{{
{{{{{{
{

wt + wxxx − wxx + ̃ywx + yxw = Gw(x, t) in (0, L) × (0, T),
w(0, t) = w(L, t) = 0 in (0, T),

wx(L, t) = wx(0, t) on (0, T),
w( ⋅ , 0) = w0( ⋅ ) in (0, L).

where
Gw(x, t) := Gtt(x, t) − ̃yttux − 2 ̃ytuxt − yxttu − 2yxtut

and w0 is an appropriate initial datum.
Thus, applying the Carleman inequality with local terms (see Proposition 3.1) to u, z, w with α defined

by (4.9), we can deduce

I(u) + I(z) + I(w) ≤ C(
T

∫
0

L

∫
0

(|G|2 + |G̃|2 + |Gw|2)e−2sα dx dt + L2
local,t0 (u))

≤ C(
T

∫
0

L

∫
0

(|G|2 + |Gt|2 + |Gtt|2)e−2sα dx dt +
T

∫
0

L

∫
0

| ̃ytux + yxtu|2e−2sα dx dt

+
T

∫
0

L

∫
0

| ̃yttux + 2 ̃ytzx + yxttu + 2yxtz|2e−2sα dx dt + L2
local,t0 (u)),

where I( ⋅ ) is the first term in the left-hand side of Carleman inequality (3.6). Proposition 2.6 and hypothe-
sis (H1) allow us to absorb the second and third terms in the right-hand side by the left-hand side in the above
inequality. It implies the existence of a positive constant C depending on M1 such that, for all s ≥ C,

I(u) + I(z) + I(w) ≤ C(
T

∫
0

L

∫
0

(|G|2 + |Gt|2 + |Gtt|2)e−2sα dx dt + L2
local,t0 (u)). (4.10)

On the other hand, since ζ(t)e−2sα(x,t) goes to zero when t tends to zero, for all x ∈ [0, L], we have

s4

C

L

∫
0

|ut(x, t0)|2e−2sα(x,t0) dx ≤ s4
L

∫
0

α2(x, t0)|ut(x, t0)|2e−2sα(x,t0) dx

= s4
t0

∫
0

d
dt(

L

∫
0

α2(x, t)|ut(x, t)|2e−2sα(x,t) dx) dt

= s4
L

∫
0

t0

∫
0

(2ααt|ut|2 + 2α2ututt − 2sα2αt|ut|2)e−2sα(x,t) dt dx

≤ C
L

∫
0

T

∫
0

(s4ζ 3|ut|2 + s4ζ 2|ut||utt| + s5ζ 4|ut|2)e−2sα(x,t) dt dx.
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Note that the right-hand side is upper boundedby the left-hand side of (4.10). Besides, hypothesis (H3) allows
to estimate the source terms in (4.10). Putting together this information, for all s > 0 large enough, we obtain

s4
L

∫
0

|ut(x, t0)|2e−2sα(x,t0) dx ≤ C(
T

∫
0

L

∫
0

|f1 − f2|2e−2sα dx dt + L2
local,t0 (u)). (4.11)

Evaluating the main equation of (4.1) in t = t0 for all x ∈ (0, L),

G(x, t0) = ut(x, t0) + uxxx(x, t0) − uxx(x, t0) + ̃y(x, t0)ux(x, t0) + yx(x, t0)u(x, t0),

and using assumptions (H1) and (H3), there exists a positive constant C such that, for all s > 0 large enough,

s4
L

∫
0

|G(x, t0)|2e−2sα(x,t0) dx ≤ C(
T

∫
0

L

∫
0

|f1 − f2|2e−2sα dx dt + L2
local,t0 (u)).

Since −α(x, t0) ≥ −α(x, t) for all x ∈ (0, L) × (0, T) (see (4.9)), after using (H3), the previous inequality
yields

s4
L

∫
0

|f1 − f2|2e−2sα(x,t0) dx ≤ C(
L

∫
0

|f1 − f2|2e−2sα(x,t0) dx + L2
local,t0 (u)),

and taking s > 0 large enough, the first term on the right-hand side can be absorbed by the left-hand side.
(ii) The proof of this case follows the previous structure. In order to obtain an inequality analogous

to (4.10), we now apply the Carleman estimate with boundary terms (see Proposition 3.2) with β defined
by (4.9). Thus, for all s ≥ C,

J(u) + J(z) + J(w) ≤ C(
T

∫
0

L

∫
0

(|G|2 + |Gt|2 + |Gtt|2)e−2sβ dx dt + L2
bo,t0 (u)).

Here J( ⋅ ) denotes the term on the left-hand side of Carleman inequality (3.19).
Note that (4.11) can be transformed to this case by considering β instead of α and L2

bo,t0 (u) instead
of L2

local,t0 (u). It is implied that

s4
L

∫
0

|G(x, t0)|2e−2sβ(x,t0) dx ≤ C(
L

∫
0

|f1 − f2|2e−2sβ(x,t0) dx + L2
bo,t0 (u)),

and again, using (H3) and taking s > 0 large enough, the first term on the right-hand side can be absorbed by
the left-hand side.

Therefore, the proof of Theorem 1.6 is complete.
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