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Abstract: In this paper we present some observer designs for infinite dimensional parabolic
systems, defined in multidimensional space domains. We consider two observation scenarios.
(i) When the state is measured in an open (possibly small) subdomain of the space domain
we obtain an exponentially convergent observer with gain for a semilinear parabolic system in
arbitrary domains. (ii) When the state is measured along a line orthogonal to the sides of a
rectangle in R? we derive an observer for a linear parabolic system. The mathematical setting
relies upon the semigroup theory for n—dimensional autonomous systems as well as on Fourier

analysis.
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1. INTRODUCTION

The problem of designing observers for systems described
by partial differential equations (PDEs) can be treated,
roughly speaking, by using two different approaches,
namely, early—and late-lumping designs. In the first case
the PDEs are first approximated by finite dimensional
systems for which the observers are designed using well-
known methods for designing observers for finite dimen-
sional systems (Deans and Lapidus, 1960; Christofides,
2012; Antoniades and Christofides, 2001; Park and Cho,
1996; Alonso et al., 2004; Marko et al., 2018). In the second
approach the observers are directly designed using the
PDE description of the plant, and the finite dimensional
schemes are only used for numerical purposes (Smyshlyaev
and Krstic, 2005; Meurer, 2013a; Boubaker et al., 1998;
Ligarius and Couchouron, 1997; Curtain, 1982; Dochain,
2000; Schaum et al., 2015, 2016, 2017; Marko et al.,
2018). Although the first approach is apparently more
simple from the methodological point of view, since the
design is reduced to known techniques for finite dimen-
sional systems, the late-lumping approach is more natural
from the system’s theoretic point of view and can lead to
simpler observer dynamics and more direct convergence
conditions, since the approximation and the convergence
questions are separated. In this paper we will consider the
design of observers for semilinear parabolic systems with
multiple space dimensions using a late-lumping approach.
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Note that in any of the approaches the observer design
requires taking into account the kind of measurements
at hand and are obviously linked with the observation
equation available for the process.

Late-lumping approaches have been already employed by
many authors. Among others, (Smyshlyaev and Krstic,
2005) design boundary observers using the backstepping
technique, (Dochain, 2000) provide the so called asymp-
totic observers. In (Meurer, 2013a) extended Luenberger
observers are developed, while variable structure estima-
tion schemes are considered in (Boubaker et al., 1998). An
observer design based on matrix inequalities is proposed
in (Schaum et al., 2015). Observers based on nonlinear
evolution equations and absolute stability are presented
in (Ligarius and Couchouron, 1997; Curtain et al., 2003),
and (Schaum et al., 2015, 2016, 2017) develop some kind
of reduced—order observers.

Motivated by the 1-dimensional semilinear parabolic reac-
tion systems observer design within a pointwise innovation
scheme whose measurement is inside of the domain (in—
domain) (Schaum et al., 2015, 2016, 2017), we deal in
this paper with the problem of designing observers for
a class of N-dimensional semilinear parabolic systems
with internal local measurements. We consider here two
different measurement scenarios: (1) For arbitrary N we
consider that the state is measured on an (possibly small)
open subset of the space domain. For N = 1 this means
e.g. that we have measurements on a (small) interval of
the spatial domain. In this scenario, we will consider {2 a
domain of class C?. (2) For the two dimensional case we
consider the case of measuring on a line for a rectangular
domain, that means we take a Lipschitz domain. For N =1
this reduces to the case of having measurements on a point
in the interior of the space domain. For the semilinear
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parabolic systems observer design in higher dimensions,
the stability analysis relies on the study of abstract Cauchy
problem for autonomous parabolic systems and spectral
theory using Fourier series. As far as we know, the only
results concerning to observers design for N—dimensional
parabolic systems are given in Jadachowski et al. (2014);
Meurer (2013b) with observations on the boundary, so our
work has as goal to fill, at least partially, this gap.

The rest of the paper is organized in the following manner.
In Section 2 we present the class of semilinear parabolic
systems considered in this work, and the observation
problems we deal with. In Section 3 we present the
observer design for the N-dimensional case, when we have
measurements on an open subset of the space domain.
In Section 4 we present a solution to the 2-dimensional
case with a rectangular domain, when the measurements
consist of a line orthogonal to one of the boundaries of the
rectangle. We conclude the paper with some final remarks
in 6. We include some simulations at the end of the paper.

2. PROBLEM FORMULATION

In this paper, we consider {2 an open bounded subset of
RN, N > 2 whose 05 is regular enough, and we take the
nonlinear heat system with Dirichlet boundary conditions.
We put @ = Q x (0,00) and ¥ = 9Q x (0,00). Given
f:R — R a given function regular enough, we consider

22— Az+ f(2) =0 in Q,

z=u on X, (1)
Z('a O) = ZO() in Q7
y =m(2) in @,

where z = z(x,t) represents the temperature, u is the

control function that is assumed regular enough, which
acts on the system through the boundary, zg is the initial
state, f is a nonlinear function of the state z which
belongs to an appropriate Sobolev space, and y is the
measurement of the temperature z. Here we consider two
different scenarios:

e For N > 2 the temperature is measured in a subdo-
main O, where O C 2 is a nonempty open subset
and ) is a domain of class C? (that means that the
boundary 92 is a N — 1 manifold of class C?) .

e For N = 2 the temperature is measured along a
simple curve 7, such that v C Q. In particular, we
consider that the domain 2 is a rectangle and that
the curve ~ is a segment orthogonal to one of the
sides of the rectangle. In this situation the boundary
0 is a Lipschitz manifold. We study here just the
linear case.

3. LOCAL IN-DOMAIN OBSERVATIONS

In this section we will propose a simple observer design
for a multidimensional semilinear parabolic systems, with
arbitrary N, when the measurements are performed in an
open domain O C €. That means that m(z) = z1p in (1).
In this section we assume that 2 is a domain of class C?
and the control u is a given function regular enough (i.e.
w € L?(0,T; H'/?(99Q)). This design is performed by using
a semigroup approach.

In this context we propose a simple observer structure,
which yields a non—redundant estimation, given by:
wy — Aw + f(w) = ko(wlo —m(z)) in Q,
w=u on ¥, (2
w(-,0) = wo(+) in Q.
We define the observation error e := z — w. From (1) and
(2) we have that e satisfies the system
e — De + f(2) = f(w) = —koelo in Q,
e=0 on X, (3)
e(-,0) =eo(+) in Q,
or in an abstract setting
{ e (t) = Ae(t) + F(=(t),w(t)), Vte[0,T], (1)
e(-0) = eo("),

where eg(-) = 20(-) —wo(+) in Q, F(z(t),w(t)) = f(z) —
f(w) and A is the unbounded linear operator defined by

A=A —kollo. (5)

Our aim is to show that the estimation error e(t) converges
asymptotically to zero, so that the estimated state w(t)
converges asymptotically to the true value of the state z(t).

In order to prove our result regarding the observer (2) we
need to recall some functional analysis results used on this
section.

3.1 Laplace operator with a potential

In this subsection we consider the elliptic operator of the
form

—Lu=—Au+V(z)u,
where the potential term V' is an appropriate space. Here,
we also consider the associated Dirichlet problem, i.e.,

—Au+V(x)u=hin Q, 6
u=0 on 0f). (6)

as well as the spectral problem to L: find A and ¢ # 0
satisfying

—Ap+V(z)p=Apin Q, )

p=20 on 0.
The next Proposition establishes estimates in the setting
of Sobolev spaces for solutions of (6). The interested reader
can find a proof in (Agmon et al., 1959), (Brezis, 2010).
Proposition 1. Let p € (1,400) and h € LP(Q). Assume
that V. e L*®(Q) and V > 0 a.e in Q. Then, there
exists a unique solution u € Wy"*(Q) N W2P(Q) of (6).
Furthermore, there exists a positive constant C' such that

llullw2r ) < Cllh|lLe)- (8)

Now, we continue with the characterization of the principal
eigenvalue of the operator —L. Briefly speaking, the eigen-
values of the operator —L can be viewed as minimizers of
a certain functional. More precisely, we have the following
proposition.

Proposition 2. Let Q be a bounded domain in RV, N > 1
such that 92 € C? and O an open subset of Q. Then, —L =
—A+kollo has a smallest eigenvalue which is denoted by
A1 and characterized by the following statements:

i) The eigenvalue problem (7) has positive eigenvalues.
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ii)

A = inf
PEH(Q)

”WHLZ(Q)71

(/w dI+ko/|<P| dm) (9)

iii) If ¢ > 0 is an eigenfunction associated to the eigen-
value A, then A = A\q.

iv) A; is the supremum of all A € R such that there exists
u € H?(Q) such that v > 0 in  and

—Au+ koulp > Au in Q. (10)
The proof of Proposition 2 can be done following the steps
of the Lemma 2.4 in Ddvila and Dupaigne (2003). Also a
similar result but for Navier-Stokes is proved in Barbu and
Lefter (2003).

Remark 3.1. For the stationary system associated to (3),
if we assume

h € LP(Q) N Lipo (), p € (1,00),

V(z) := kolo(z) € L*=(Q2)

then, there exists a unique solution of —Ae = h in Q and
e = 0 on 9 such that e € W "*(2) NW2?(€). This result
is called Calderon—Zygmund estimate and also involves
smoothness on the boundary 09, namely, 90 € C2.
The interested reader can find additional information in
(Dupaigne (2011), p. 252) and (Agmon et al., 1959).
Remark 3.2. Following Remark 3.1 and (Cazenave and
Haraux, 1998), if we consider in (4) the initial data eg in
H2(Q)NHL(Q) and F = 0, then e € C([0,0), H2(£2)). On
the other hand, if F' is Lipschitz continuous on bounded
subset of L2(Q) and ey € H?(Q) N H}(Q), the solution e
of (4) belongs to

C([0,T), D(A)) N C* ([0, T]; L*(52)).

and kg >0,

3.2 Observer design

In order to prove a stability condition associated to the
solution of (3), we start analyzing the following eigenvalue
problem for the Laplace operator with a discontinuous
potential

—Av=Xv in Q,
v

=0 on 0f), (11)

where A was defined in (5).

The following result shows that Cy semigroup S(¢) asso-
ciated to A satisfies a stability condition in the sense of
Trotter—Kato (see (Trotter, 1958)).
Lemma 3. Let A1 be the first eigenvalue of —A in HE(Q)
such that A\ > 0. Then

ISl ez < e ™, (12)
for all t > 0.

Proof. Let ey € H?(2) N H}(Q), e(t) = S(t)eg and con-
sider g(t) = (e*?||e(t)||)?, for all t > 0. Then, integrating
by parts we have

e 2Mitg(t) = 2)\1/62(t)dx+2/e(t)et(t)dx

21 [e2(t) d:c+2/ (t)[Ae(t) — koe(t)lo|dz

eX( dx—2/|V6(t)|2dx

—QkO/eZ(t)dx
o

Since A; is given by (9), we deduce that ¢g; < 0, thus g is de-
creasing for all + > 0, which implies ||S(t)eg|| < e *¢|e|
for all eg € D(A). Finally, using density arguments we get
(12). This completes the proof of Lemma 3.

We are ready to establish the first result of this paper.
Theorem 4. Let us assume that f is globally Lipschitz with
Lipschitz constant L, f(0) = 0 and that —\; < —L, where
A1 is the minimum eigenvalue of the operator —A defined
n (5). Then, the system (2) is an observer for system (1)
with sensor location at O.

Remark 3.3. Tt is clear that the size of \; depends on the
choice of ky so that the inequality —A\; < —L can be
enforced by selecting kg, and the gain of the exponential
decay depends on its selection.

Proof. For the proof let us assume that f € C1(R). We
define
fs) ifs#0
s

f'(s)if s =0.
We consider a linearization of (4): for ¢ € L?*(Q) we
consider

p(s) =

{ (t) = Ae(t) +
6('70) = 60(')7

Using that f is L-Lipschitz continuous and Lemma 3, we
get that

p(ge, Vvt el[0,T],

(13)

le(®)ll < e (lleoll + ¢~ “L/ns llle(r) dr )

and using Gronwall’s inequality it follows that for any
q € L2(Q), |le(®)]| < |leo|le= 5 in particular for ¢ = e,
which implies that for —\; < —L the observer convergence
in L2(9) is ensured. The general case f L-Lipschitz holds
by a standard regularization argument. O

4. ORTHOGONAL MEASUREMENT TO THE AXES

In this section we will consider as domain a rectangle in
R? and the observation performed at a line orthogonal
to one of the sides of the rectangle. Here we lost the
regularity of the domain, but the existence and regularity
of solutions can be proved and, moreover, we give explicitly
the solution.

The framework of this section is based in the works (Schu-
macher, 1983; Curtain, 1982) in which the compensators
design for parabolic system is studied. Our purpose is to
make an observer design in a rectangular domain Q =
(0,a) x (0,b) C R2. Define Q@ = Q x (0,00), ¥ = 9 x
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or Yo

o a a

Fig. 1. Rectangular domains with orthogonal measurement
to the axes.

(0,00). Let zq be a fixed point in (0, a). In this section the
observations are given by m(z) = z(xo,y,t). That is, in
this section we will consider the linear system:

z2—Az=0 in Q,
zZ=1u on X,
2(,0)=2()  inQ (14)

m(z) = z(zo,y,t) (y,t) € (0,b) x (0,00).
We define:

M krx
GM (w7 Z) = Z hk Sln(T) (w(x()a Y, t) - Z(JIQ, Y, t)))
k=1

where the constants hj have to be determined later. Thus,
we propose the observer as
wy — Aw = Gpr(w, 2) in Q,
w=1u on X,
w(+,0) = wo(+) in Q.
This analysis can also be found in the literature as modal
observer design see, e.g. Vande-Wouwer and Zeitz (2009).

(15)

The error system is given by

M
k
e — Ae = Z hy, sin(ﬂ)e(ajo,y,t) in Q,
a
k=1 (16)
e=0 on X,
e(+,0) = eo(-) in 0,
where e(z,y,t) := w(z,y,t)—z(x, y,t), for every (z,y,t) €
Q.
We recall the following definition:
Definition 4.1. Let L be a linear (unbounded) differential
operator with eigenvalues (A,),>1 and associated eigen-
functions (5, )n>1 defined in a set Q C RYN. We say that
a € Qs a strategic point of L, if A, is simple and ¢,,(a) # 0
for every n > 1.

The eigenvalues {Ay, 5 }mnen for the Laplacian opera-
tor with homogeneous boundary in the rectangle can
be obtained explicitly: we denote the eigenfunctions by

G (T,Y) = Ya.m(T)pn(y), with
wn= () + ()
and
Yam(x) = sin(?), Vo n(y) = sin(%).

The second result in this paper is the following.

Theorem 5. Suppose that x is a strategic point of the
Dirichlet Laplacian in the interval (0, a). Then, there exist

constants h;,i = 1,..., M such that system (15) is an
observer for system (1) with sensor location at zg.

Proof. For the proof, we first suppose that M = 1.
We take the Fourier series expansion for the error state,

—+o0
that is, e(z,y,t) = > emn(t)Pm.n(z,y), then the main
k,m=1
equation of (16) is equivalent to
—+o0
Z [elm,n(t) + Am,n€m,n(t)]om,n
m,n=1

(17)

+oo
= hlwa,l(l‘) Z €m,n (t)wa,m(xO)wb,n(y)'
m,n=1
Multiplying by 1, ¢(z) and integrating on (0, a) we get for
¢ # 1 that
+oo
Z[eé,n(t) + Aeneen ()] 1p,n(y) = 0.
n=1
Multiplying by ¢ k(y) and integrating over (0,b), we get
a ODE for ey, (t), with solution

eon(t) = e ntey  (0), Ve #£ 1. (18)
For ¢ =1 we get

+oo

D 1€ #) + A = hatr (20))exn (8)]tonn (y) =

n=1

—+oo
hy Z e Mite; j(0)ha,i (o) ve,; (1)
i#1, j=1

So
e1n (t) — el’n(o)e_()\l,n_hlwa.l (wo))t

t
n /e—(xl,n—hma‘l<zo>>(t—T>F1 (0, €0, 7> I )dr,
0

where
Fi(zo,eo t,hn) == > e ™ hyen n(0)Ya,m(20)1n-

m#1,neN

It is clear that we have a gain as soon as —h14,1(x¢) > 0.
The case M > 1. For £ > M we get

ern(t) = e_”\’f~“teg,n(0). (19)
Consider
€1,n
€2.n
Xmn = :
EM,n
We get
—Aln 0
lew,n: Xnmn
0 —Amn
hitr (o) hiar(xo)
hartr (xo) -+ hardar(zo)

So we have to choose h;, i = 1,..., M such that the matrix
( har(zo) -+ hahn (o) )
hapr(xo) -+ hardm (o)

is Hurwitz. O
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Remark 4.1. Tt is clear that a similar analysis can be
performed if the observations are taken in the horizontal
line y = yp.

5. NUMERICAL EXPERIMENTS

In this section, the designed observer is illustrate for the
cases of local internal measurement (Section 3) and orthog-
onal measurement to the axes (Section 4) for parabolic
systems in 2D. For the numerical experiments, Po—type
finite elements and a BDF method are considered for the
discretization in space and time respectively. The imple-
mentation is carried out in FreeFem++ and Matlab for
linear cases and uses the following data: we fix Q = (0,1)?,
T = 1, the observation set O is a ball centered at (0.2, 0, 2)
and radius R = 0.1, the time step size is At = 5 x 1072,
We also consider the initial distributions zg = cos(27z)
and wg = 100zy for the parabolic system (1) and (2),
respectively. External forces F, = x(1 —z), Fy, = y(1 —vy)
into (1) and (2) are added, the correction constant is
ko = 100 and by simplicity, controls u = 10 are also
considered. Respect to the orthogonal measurement to the
axes, we consider g = 0.5, M =1, h; = 50.

In order to appreciate a major numerical visualization, we
show cuts of the states z, w and e with the plane z = 0.2
in the following figures. More precisely, Figure 2 displays
the temperature system and observer designs (2) and (15)
without injection, that is, when m(z) = 0 for every case.

System

0.5 1
t y

Observer without injection

1500
1000

500

oo

0.5 1
t y

Observer without injection

600

04
0

05
05

t y

Fig. 2. Cut section of the states z and w by the plane
2 = 0.2. System (top) and observer response without
measurements in—domain (middle) or without orthog-
onal measurement to the axes (bottom).

Once that the local measurement or the orthogonal obser-
vation is applied into the observer, we can appreciate the
error dynamics and the profiles for the observer designs.
Thus, Figure 3 corresponds to the observers with injection
m(z) meanwhile that Figure 4 is associated to the error
systems for every case.

Observer with injection

Observer with injection

0. -
0 - -~ 0.5
0.5

t Y

Fig. 3. Observer profiles. Local in—domain measurements
(top) and orthogonal measurements to the axes (bot-
tom).

Error distribution

200
150

100

Error distribution

150

100

0 - - 05
0.5

t Y

Fig. 4. Error profiles. Local in-domain measurements (top)
and orthogonal measurements to the axes (bottom).
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6. CONCLUSION

We have shown in this paper that it is possible to construct
a globally and exponentially convergent observer for an
N-dimensional semilinear parabolic system with arbitrary
N > 2 when the state is measured on an open subset of a
regular domain.

For a linear parabolic system defined on a rectangular
domain in R? we have shown that a convergent observer
can be designed using the measurement of the state along
a line parallel to the axes of the rectangle. Although the
technique used in this paper do not allow to treat the
semilinear case when the observations are performed in
a line parallel to the axes in the rectangular case, it is
not difficult to extend the results in the linear case for
the rectangular domain to hypercubes and to observations
on hyperplanes parallel to the sides of the hypercube. It
remains an open question the observation on a general
curve in the two dimensional case and in /N-dimensional
domains.
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