
A NUMERICAL STUDY OF THIRD–ORDER EQUATION WITH

TIME–DEPENDENT COEFFICIENTS: KDVB EQUATION

CRISTHIAN MONTOYA

Abstract. In this article we present a numerical analysis for a third–order differential equation with

non–periodic boundary conditions and time–dependent coefficients, namely, the linear Korteweg–de Vries
Burgers equation. This numerical analysis is motived due to the dispersive and dissipative phenomena

that government this kind of equations. This work builds on previous methods for dispersive equations

with constant coefficients, expanding the field to include a new class of equations which until now
have eluded the time–evolving parameters. More precisely, throughout the Legendre–Petrov–Galerkin

method we prove stability and convergence results of the approximation in appropriate weighted Sobolev

spaces. These results allow to show the role and trade off of these temporal parameters into the model.
Afterwards, we numerically investigate the dispersion–dissipation relation for several profiles, further

provide insights into the implementation method, which allow to exhibit the accuracy and efficiency of

our numerical algorithms.

1. Introduction

Since the Orszag’s pioneer works in the early seventies [17], several numerical spectral methods for
solving initial value problems of partial differential equations (PDEs) have become increasingly popular
in recent years, specially those associated to spectral Galerkin approximations. As it is well known, the
spectral methods involve representation the solutions as a truncated series of known functions of the
independent variables. In addition, due to the high–order accuracy whenever they work, these methods
are preferable in numerical solutions of PDEs. In that framework, Jacobi polynomials [34] have been
used in a variety of applications due to their ability to approximate general classes of functions as well
as to its orthogonality properties; for instance, in resolution of the Gibbs’ phenomenon [18], transverse
vibrations in beams and plates [5], electrocardiogram data compresion [30, 35], and solution to even–order
differential equations subject to various boundary conditions [7, 8, 10].

For the class of odd–order differential equations, which only includes a dispersive process, such as the
Korteweg–de Vries (KdV) equation [24], it is well known that periodic boundary conditions onto those
models allow for example to apply the Fourier spectral method for obtaining stability results and error
estimates, see for instance, Fornberg and Whitham [14], Fenton and Rienecker [13], Maday and Quarteroni
[29], Deng and Ma [6], and references therein. Nevertheless, by considering a bounded domain with non–
periodic boundary conditions on those models, polynomial spectral schemes based in Jacobi polynomials
have been successfully used for their numerical approximations in space [1, 27, 28, 25, 19, 32, 23]. A
common characteristic in the previous papers is the Petrov–Galerkin formulation, which appears due
to the lack of symmetry of the main operator and simultaneously incorporates the boundary conditions
inside the polynomial bases. This fact allow to integrate by parts freely in space omitting any additional
boundary terms. In addition, it is worth mentioning the hybrid method proposed by Ma and Sun [27],
where the linear part of the KdV equation was treated by a Legendre–Petrov–Galerkin (LPG) method,
and the nonlinear term was treated using a Chebyshev–collocation method. Moreover, they showed an
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estimate of order N−r, r ≥ 2 in L2–norm (i.e., N is the number of modes) for the linear KdV equation
when the solutions satisfy a suitable regularity. Indeed, [27] constitutes a starting point in our analysis.

By incorporating a second–order term into the model, it might add a dissipative phenomenon such as
occurs in Burgers–type equations [3]. The resultant equation is the so–called Korteweg–de Vries–Burgers
(KdVB) equation. In [33], Shen first introduced a dual LPG method for the KdVB equation, where the
innovation lies in the choice of both trial and test spaces, which form a sequence of orthogonal polynomials
in weighted Sobolev spaces. This fact allow to establish optimal error estimates in appropriate Sobolev
spaces. More precisely, in that paper, for the linear KdVB equation with constant coefficients, the
author proven a rate of convergence of order (1 + |β|N)N1−r, r ≥ 1, where β ∈ (− 1

3 ,
1
6 ) is the coefficient

associated to the second–order term (in some cases it can represent the viscosity constant). Afterwards,
Yuan et al. [39] extended the method proposed by Shen to fifth–order KdV–type equations. On the other
hand, by using Jacobi polynomials, Doha et al. [9] proposed numerical schemes for solving both third
and fifth–order differential equations with space–dependent coefficients, although no theoretical result
have been provided.

Respect to the time discretization, a classical Crank–Nicholson–lead–frog scheme describes a good
convergence property for the nonlinear cases in many of the above papers, meanwhile, a forward Euler
scheme is enough for the linear model. However, it should be pointed out that, in all previous approaches,
they have obtained either numerical or theoretical results assuming always that both the dispersion and
dissipation parameters are time–independent coefficients.

In general aspects, the ability to explicitly express the time–parametric dependence of coefficients in a
dynamic system is necessary for accurate and quantitive characterization of partial differential equations.
In practice this is an important innovation since the parameters of physical systems often vary during
the measurement process, so that the parametric dependencies may be disambiguated from the model
itself. Motivated by this, our work builds on previous methods for dispersive equations with constant
coefficients, expanding the field to include a new class of equations which until now have eluded the time–
evolving parameters. In fact, in contrast to the previous works, in this paper we consider a third–oder
equation with time–dependent coefficients, namely, the KdVB equation with non–periodic boundary con-
ditions. To the best of our knowledge, in the literature no rigorous analysis of stability and convergence
of a numerical scheme exists with time–dependent coefficients for this model. The inclusion of dispersive
and dissipative parameters with temporal dependence makes a more careful treatment of the numerical
approximation, giving now a first theoretical answer to the relation between them, as well as indicating
appropriate ranges where the solutions can be tested in order to obtain desired rate of error. Thus our
method takes as starting point the framework proposed in [27], in this way, the first goal of this paper
is to construct the LPG scheme for the KdVB equation with time varying coefficients. At this point, it
is worth mentioning that under this setting, one main advantage is the use of few number of modes for
obtaining good numerical simulations. Additionally, our error analysis show that the convergence rate is
suboptimal respect to diffusion parameters, while, for dispersion parameters, the convergence is optimal.
It is consistent with the results above mentioned and studied in [27, 33] for constant coefficients. Never-
theless, due to the parametric dependency, our estimates are carried out by considering an appropriate
relation among the variable time coefficients, which in turn shows a strong correlation between those
coefficients and the LPG method.

The remainder of this paper is organized as follows. In Section 2, we develop a fully discrete approxi-
mation for the KdVB equation with time–varying coefficients, further, we prove stability and convergence
estimates in weighted Sobolev spaces. In Section 3, we numerically investigate the dispersion–dissipation
relation for several profiles, and provide insights into the implementation method.
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2. Method and theoretical results

In this section we study the numerical approximation for third–order differential equations with non–
periodic boundary conditions, which in turn include time–dependent coefficients. Specifically, we consider
equations of the form ∂tu+ α(t)∂3xu− β(t)∂2xu = f(x, t) in (−1, 1)× (0, T ),

u(−1, t) = u(1, t) = ∂xu(1, t) = 0 in (0, T ),
u(·, 0) = u0(·) in (−1, 1),

(2.1)

where u = u(x, t) is the state variable in (−1, 1) × (0, T ), f = f(x, t) is an external force acting in the
system, and u0 is the initial datum. System (2.1) represents the so–called linear Korteweg de Vries–
Burgers (KdVB) equation. In 1895, Korteweg and de Vries developed an evolutionary model to describe
the propagation of long water waves in channels of shallow depth, namely, KdV equation, in which two
phenomena are involved, dispersion (third-order derivative) and nonlinear convection (nonlinear term).
The interaction of these terms gives rise to a wave traveling at constant speed without losing its sharp,
called soliton [2, 12, 24]. As consequence of the union of the KdV and Burgers equations arise the KdVB
equation, which in our case has homogeneous non–periodic boundary conditions.

From a numerical point of view, KdVB–type equations with constant coefficients have been widely
studied by means of different methods; see for instance the works [31, 37, 11, 23, 27, 28] and references
therein for more details.

On the other hand, by introducing variable coefficients α(t) > 0 and β(t) > 0, the KdVB equation
(2.1) is useful to describe solitonic propagation in fluids [38], a variety of cosmic plasma phenomena
[15, 26, 36, 16], among others. Motivated by those applications and as mentioned, as far as we know,
an exhaustive numerical study for (2.1) has not been reported. Therefore, our article fill this gap giving
theoretical–numerical answers to the relation between them, as well as indicating appropriate ranges
where the solutions can be tested.

2.1. Legendre–Petrov–Galerkin method. In this subsection we formulate a fully discrete finite ele-
ment scheme based in the LPG method for solving (2.1). We begin by describing the LPG approximation
framework and listing the basic properties used in the analysis.

For any real constants a, b, let ωa,b(x) = (1 − x)a(1 + x)b be weight functions on (−1, 1) =: I . The
inner product and norm in L2

ωa,b(I) are denoted by (·, ·)ωa,b and ‖ · ‖ωa,b respectively. We will omit the

subscript ωa,b whenever ωa,b(x) = 1. Let PN (I) be the space of polynomials of degree at most N on the
interval I and

VN = PN (I) ∩H2,1
0 (I), WN = PN (I) ∩H1

0 (I),

where H2,1
0 (I) = {v ∈ H2(I) ∩H1

0 (I) : ∂xv(1) = 0}.
Let Lk be the kth degree Legendre polynomial. To continuation we recall some properties of Legendre

polynomials which will be used in this paper (see [34]).

1∫
−1

Lj(x)Lk(x)dx =
2

2k + 1
δjk. (2.2)

Ln(x) =
1

2n+ 1
(L′n+1(x)− L′n−1(x)), n ∈ N. (2.3)

L′n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Lk(x). (2.4)
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Bonnet’s recursion formula:

(2n+ 1)xLn(x) = (n+ 1)Ln+1(x) + nLn−1(x), n ∈ N. (2.5)

Now, the semidiscrete LPG method for (2.1) consists in finding uN (t) ∈ VN such that for almost every
t ∈ (0, T ) {

(∂tuN (t), v) + α(t)(∂3xuN (t), v)− β(t)(∂2xuN (t), v) = (f(t), v) ∀v ∈WN−1,
(uN (0), v) = (u0, v) ∀v ∈WN−1,

(2.6)

holds.
From [27], we shall use appropriate basis functions such that the corresponding matrices are sparse.

To this end, for N ≥ 3 and n = [0, N − 3], we define the basis functions {φn} for the space WN−1 by:

φn(x) = cn+1(Ln(x)− Ln+2(x)), cn =
1

2n+ 1
.

By taking into account (2.3), it is easy to verify that ∂xφ(x) = −Ln+1(x).
Next, we introduce the semidiscrete state variable uN (·, t) ∈ VN on spectral space and its vector

representation:

uN (·, t) = (1− x)

N−3∑
n=0

ûn(t)φn(·), u(t) = (û0(t), . . . , ûN−3(t))T .

Respect to the time discretization, a classical forward scheme is considered. Thus, let ∆t be the step
size in time space and tk = k∆t (k = [0, nT ] and tNT

= T = nT∆t).
By simplicity, vk(x) := v(x, tk) is denoted by vk and

vk+
1
2 =

1

2
(vk+1 + vk).

The fully discrete spectral method for (2.1) reads: to find ukN ∈ VN such that{
(∆t)−1(uk+1

N − ukN , v) + α(tk)(∂3xu
k+ 1

2

N , v)− β(tk)(∂2xu
k+ 1

2

N , v) = (fk+
1
2 , v) ∀v ∈WN−1,

(u0N , v) = (u0, v) ∀v ∈WN−1,
(2.7)

for k = [0, nT − 1].

2.2. Stability analysis. In this subsection we establish the stability of the Legendre–Petrov Galerkin
method for solving the discrete system (2.7). Before that, some theoretical properties in weighted spaces
must be considered.

The following lemma establishes a Poincaré–type inequality [33].

Lemma 2.1. Let u ∈ VN . Then, ∫
I

|u(x)|2

(1− x)3
dx ≤

∫
I

|∂xu(x)|2

1− x
dx.

Remark 2.2. Observe that, for any v ∈WN−1 and u ∈ VN follows

−(∂2x((1− x)v), ∂xv) = 2‖∂xv‖2 − ((1− x)∂2xv, ∂xv) =
3

2
‖∂xv‖2 + |∂xv(−1)|2

and

−(∂2xu, (1− x)−1u) = ((1− x)−2u, ∂xu) + ((1− x)−1∂xu, ∂xu) = −‖u‖2ω−3,0 + ‖∂xu‖2ω−1,0 ≥ 0,

where the above inequality is consequence of Lemma 2.1.

The next theorem provides expressions for the stability of the LPG scheme given in (2.7).
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Theorem 2.3. Let T > 0 and ω(x) = ω−1,0(x). Then,

i) Assume β(t) ≥ 0 and α(t) ≥ 1

3`
, for any ` ≥ 1 and 0 ≤ t ≤ T . Then, the LPG approximation

ukN of (2.1) satisfies

‖unN‖2ω + ∆t
n−1∑
k=0

(3`α(tk)− 1)‖∂xu
k+ 1

2

N ‖2 + ∆t
n−1∑
k=0

α(tk)|uk+
1
2

N (−1)|2

+∆t
n−1∑
k=0

β(tk)
(
‖∂xu

k+ 1
2

N ‖2ω − ‖u
k+ 1

2

N ‖2ω−3,0

)
≤ 8`‖u0N‖2ω + 8∆t`2

n−1∑
k=0

‖fk+ 1
2 ‖2H−1(I),

(2.8)

for all 0 < n ≤ nT .
ii) Assume β(t) > 0 and α(t) > 0, for t ∈ [0, T ]. Then, the LPG approximation ukN of (2.1) satisfies

‖unN‖2ω + ∆t
n−1∑
k=0

α(tk)‖∂xu
k+ 1

2

N ‖2 + ∆t
n−1∑
k=0

α(tk)|uk+
1
2

N (−1)|2

+∆t
n−1∑
k=0

β(tk)
(
‖∂xu

k+ 1
2

N ‖2ω − ‖u
k+ 1

2

N ‖2ω−3,0

)
≤ 4‖u0N‖2ω + 4∆t

n−1∑
k=0

1

α(tk)
‖fk+ 1

2 ‖2H−1(I),

(2.9)

for all 0 < n ≤ nT .

Proof of Theorem 2.3.

i) Let us consider the test function v = 2`v
k+ 1

2

N in (2.7), with vkN = ukNω. Then, after using remark
2.2 we get

2`(∆t)−1(uk+1
N − ukN , ukNω) + 3`α(tk)‖∂xvk+

1
2 ‖2 + 2`α(tk)|∂xvk+

1
2 (−1)|2

+2`β(tk)
(
−‖uk+

1
2

N ‖2ω−3,0 + ‖∂xu
k+ 1

2

N ‖2ω
)

≤ 2|(fk+ 1
2 , `v

k+ 1
2

N )|.

(2.10)

Using the fact that ‖u‖H−1(I) = sup
v∈H1

0 (I)

|(u,v)|
|v|2 and Young’s inequality (i.e., ab ≤ ap

p + bq

q ; 1
p+ 1

q = 1;

a, b ≥ 0) with p = q = 2 and a = `|fk+ 1
2 |, b = |vk+

1
2

N |, the right hand side of the previuos estimate
can be estimated by

2|(fk+ 1
2 , `v

k+ 1
2

N )| ≤ `2‖fk+ 1
2 |‖2H−1(I) + ‖∂xv

k+ 1
2

N ‖2.

Replacing the above estimate into (2.10) and summing for k = [0, n− 1], we obtain

`‖unN‖2ω + ∆t
n−1∑
k=0

(3`α(tk)− 1)‖∂xv
k+ 1

2

N ‖2 + 2∆t`
n−1∑
k=0

α(tk)|vk+
1
2

N (−1)|2

+2∆t`
n−1∑
k=0

β(tk)
(
−‖uk+

1
2

N ‖2ω−3,0 + ‖∂xu
k+ 1

2

N ‖2ω
)

≤ `‖u0N‖2ω + ∆t`2
n−1∑
k=0

‖fk+ 1
2 ‖2H−1(I),

Finally, note that ∂xu
k+ 1

2

N (−1) = 2∂xv
k+ 1

2

N (−1) and

‖∂xu
k+ 1

2

N ‖2 ≤ 2‖(1− x)∂xv
k+ 1

2

N ‖2 + 2‖∂xv
k+ 1

2

N ‖2 ≤ 8‖∂xv
k+ 1

2

N ‖2.
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This argument allows to deduce (2.8) and ends the proof to the first case.
ii) Since the proof of (2.9) follows the above structure, we have omitted the details. However, in this

case, the term (fk+
1
2 , v

k+ 1
2

N ) is upper bounded by using Young’s inequality (i.e., ab ≤ ap

p + bq

q ;

1
p + 1

q = 1; a, b ≥ 0) with p = q = 2 and a = α
1
2 |vk+

1
2

N |, b = α−
1
2 |fk+ 1

2 |.
This concludes the proof of Theorem 2.3. �

Remark 2.4. In the dissipative case (that is, α = 0) where the symmetry of the main operator is
guaranteed, a Galerkin approximation with Legendre polynomials in WN turns out to be more convenient
than the Petrov–Galerkin method. Otherwise, a LPG scheme might be inestable even for certain constant
dissipation coefficients.

Remark 2.5. Theorem 2.3 allows to visualize how the presence of a positive time–dependent dispersion
coefficient could affect the stability if an external source acts into the system, see (2.9). Nevertheless,
it can be corrected by considering a restriction upon the dispersion coefficient, and therefore the LPG
method is stable, see (2.8).

2.3. Error analysis. In this paragraph, we present approximation properties of some projection oper-
ators, which are used later on. First, we recall a basic result of Jacobi polynomial approximation [25].

Let P a,bN be the L2
ωa,b(I)–orthogonal projector L2

ωa,b(I) 7→ PN (I) and by simplicity, PN := P 0,0
N .

Lemma 2.6. Assume a, b > 1 and r > 0. Then, for any v ∈ Hr(I) and any 0 ≤ s ≤ r,

‖∂sx(P a,bN v − v)‖ωa+s,b+s ≤ CNs−r‖∂rxv‖ωa+r,b+r . (2.11)

Now, from [27], we define ΠN : H2,1
0 (I) 7→ VN such that

(∂2x(ΠNu− u), ∂xv) = 0, ∀v ∈WN−1. (2.12)

Moreover, ΠN satisfies

ΠNu := ∂̄−2x PN−2∂
2
xu, (2.13)

where

∂̄−1x v(x) := −
1∫
x

v(y)dy, ∂̄−ix v(x) = (∂̄−1x )iv(x).

Lemma 2.7. Assume u ∈ H2,1
0 (I) ∩Hr(I) and r ≥ 2. Then

i) ‖∂sx(ΠNu− u)‖ωs−2,s−2 ≤ CNs−r‖∂rxu‖ωr−2,r−2 , for any 0 ≤ s ≤ 2.
ii) (ΠNu− u, v) = 0, for all v ∈ PN−4(I).
iii) ‖∂x(ΠNu− u)‖ ≤ CN2−r‖∂rxu‖ωr−2,r−2 .

Proof. The proof of the first two items can be found in [25]. Thus, we only proof the last point.
Then, using Lemma 2.6, (2.13), the first part of this lemma, and also the Poincaré inequality, we can

deduce
‖∂x(ΠNu− u)‖2 = (∂x(ΠNu− u), ∂x∂̄

−1
x (∂x(ΠNu− u)))

= |(∂2x(ΠNu− u), ∂̄−1x (∂x(ΠNu− u)))|
= |((PN−2 − I)∂2xu, ∂̄

−1
x (∂x(ΠNu− u))|

= |((PN−2 − I)∂2xu,ΠNu− u)|
≤ ‖(PN−2 − I)∂2xu‖‖ΠNu− u‖
≤ CN2−r‖∂rxu‖ωr−2,r−2‖∂x(ΠNu− u)‖.

�
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Now, for the error analysis, let ukN be the numerical solution of the scheme (2.7) and let u ∈ X be a
solution associated to (2.1), where

X ≡ C([0, T ];H2,1
0 (I) ∩Hr(I)) ∩H1(0, T ;H2,1

0 (I) ∩Hmax{2,r−1}(I)) ∩H3(0, T ;H−1(I)), r ≥ 2.

Moreover, an assumption on the coefficients α, β ∈ L∞([0, T ]) must be imposed, namely:

H1. For every ε1, ε2 > 0,((3

8
− 1

16
ε1

)
αk −

(1

8
ε2 +

9

8

)
βk
)
> 0, ∀k = [0, nT − 1]. (2.14)

In what follows, êkN = ΠNu(·, tk)− ukN , ẽkN = u(·, tk)−ΠNu(·, tk), and ekN = u(·, tk)− ukN = ẽkN + êkN .

Theorem 2.8. Let u ∈ X and let H1 be satisfied. Then, for 0 ≤ n ≤ nT
‖unN − un‖ ≤

√
2‖unN − un‖ω−1,0 . Cα(N−r + (∆t)2) + Cβ(N1−r + (∆t)2), (2.15)

where Cα ≈
(

min
t∈[0,T ]

α(t)
)−1

and Cβ ≈ ‖β‖L∞([0,T ]).

Proof of Theorem 2.8. From (2.1), (2.7) and (2.12), for k = [0, nT − 1] and for any v ∈WN−1 we get{
(∆t)−1(êk+1

N − êkN , v)− αk(∂2xê
k+ 1

2

N , ∂xv)− βk(∂2xê
k+ 1

2

N , v) = (gk, v) + βk(∂2xẽ
k+ 1

2

N , v)− βk(∂2xe
k+ 1

2

N , v),
(ê0N , v) = (ΠNu

0 − u0N , v),

where

gk = ∂tu
k+ 1

2 −ΠN∂tu
k.

By simplicity, let ω(x) = ω−1,0(x). Considering in the previous system the test function v = 2ωê
k+ 1

2

N ,
and using Remark 2.2, we get

(∆t)−1(‖êk+1
N ‖2ω − ‖êkN‖2ω) + 3αk‖∂x(ωê

k+ 1
2

N )‖2 + 2αk|∂x(ωê
k+ 1

2

N )(−1)|2

+2βk
(
−‖êk+

1
2

N ‖2ω−3,0 + ‖∂xê
k+ 1

2

N ‖2ω
)

= 2(gk, ωê
k+ 1

2

N ) + 2βk(∂2xẽ
k+ 1

2

N , ωê
k+ 1

2

N ) + 2βk(∂xe
k+ 1

2

N , ∂x(ωê
k+ 1

2

N )).

(2.16)

From Lemma 2.6, Lemma 2.7 and Young’s inequality (i.e, ab ≤ a2

2ε + εb2

2 , ε > 0) follows:

|(gk, ωêk+
1
2

N )| ≤ |(∂tuk+
1
2 − ∂tuk, ωê

k+ 1
2

N )|+ |((I −ΠN )∂tu
k, (I − PN−4)ωê

k+ 1
2

N )|
≤ C

(
‖∂tuk+

1
2 − ∂tuk‖H−1(I) +N−r‖∂tuk‖Hmax{2,r−1}(I)

)
‖∂x(ωê

k+ 1
2

N )‖

≤ ε1α
k

2
‖∂x(ωê

k+ 1
2

N )‖2 + Cαk,ε1

(
‖∂tuk+

1
2 − ∂tuk‖2H−1(I) +N−2r‖∂tuk‖2Hmax{2,r−1}(I)

)
,

where Cαk,ε1 =
C2

2ε1αk
, for every ε1 > 0.

Observe that the last two terms in the right–hand side of (2.16) can be upper bounded by using again
Young’s inequalities. Thus, putting together those estimates, we obtain

(∆t)−1(‖êk+1
N ‖2ω − ‖êkN‖2ω) + 3αk‖∂x(ωê

k+ 1
2

N )‖2 + 2αk|∂x(ωê
k+ 1

2

N )(−1)|2

+2βk
(
−‖êk+

1
2

N ‖2ω−3,0 + ‖∂xê
k+ 1

2

N ‖2ω
)

≤ ε1α
k

2
‖∂x(ωê

k+ 1
2

N )‖2 + Cαk,ε1

(
‖∂tuk+

1
2 − ∂tuk‖2H−1(I) +N−2r‖∂tuk‖2Hmax{2,r−1}(I)

)
+ε2β

k‖∂x(ωê
k+ 1

2

N )‖2 +
βk

ε2
‖∂xẽ

k+ 1
2

N ‖2 + βk‖∂xe
k+ 1

2

N ‖2 + βk‖∂x(ωê
k+ 1

2

N )‖2,

(2.17)
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for every ε1, ε2 > 0.
Thus, assuming the relation ((

3− 1

2
ε1

)
αk −

(
ε2 + 1

)
βk
)
> 0

and adding for k = [0, nT − 1], we deduce

‖ênN‖2ω + ∆t
nT−1∑
k=0

((
3− 1

2
ε1

)
αk −

(
ε2 + 1

)
βk
)
‖∂x(ωê

k+ 1
2

N )‖2

+2∆t
nT−1∑
k=0

βk
(
−‖êk+

1
2

N ‖2ω−3,0 + ‖∂xê
k+ 1

2

N ‖2ω
)

≤ ‖ê0N‖2ω + ∆t
nT−1∑
k=0

βk

ε2
‖∂xẽ

k+ 1
2

N ‖2 + βk‖∂xe
k+ 1

2

N ‖2

+∆t
nT−1∑
k=0

Cαk,ε1

(
‖∂tuk+

1
2 − ∂tuk‖2H−1(I) +N−2r‖∂tuk‖2Hmax{2,r−1}(I)

)
,

for every ε1, ε2 > 0.
Now, using the hypothesis H1 and from the fact that

‖∂xe
k+ 1

2

N ‖2 ≤ 2‖(1− x)∂x(ωê
k+ 1

2

N )‖2 + 2‖∂x(ωe
k+ 1

2

N )‖2 ≤ 8‖∂x(ωê
k+ 1

2

N )‖2,
the above inequality can be transformed by:

‖ênN‖2ω + ∆t
nT−1∑
k=0

((3

8
− 1

16
ε1

)
αk −

(1

8
ε2 +

9

8

)
βk
)
‖∂xe

k+ 1
2

N ‖2

+2∆t
nT−1∑
k=0

βk
(
−‖êk+

1
2

N ‖2ω−3,0 + ‖∂xê
k+ 1

2

N ‖2ω
)

≤ ‖ê0N‖2ω + ε−12 ‖β‖L∞([0,T ])∆t
nT−1∑
k=0

‖∂xẽ
k+ 1

2

N ‖2

+Cε−11

(
min
t∈[0,T ]

α(t)
)−1

∆t

nT−1∑
k=0

(
‖∂tuk+

1
2 − ∂tuk‖2H−1(I) +N−2r‖∂tuk‖2Hmax{2,r−1}(I)

)
,

(2.18)

for every ε1, ε2 > 0.
Finally, we estimate the terms in the right–hand side of (2.18). To do that, we use Lemma 2.7 and

[25]. Then, a direct computation allows us to obtain the inequalities:

∆t
n−1∑
k=0

‖∂tuk+
1
2 − ∂tuk‖2H−1(I) ≤ C(∆t)4‖∂3t u‖2L2(0,T ;H−1(I)),

∆t
n−1∑
k=0

‖∂tuk‖2Hmax{2,r−1}(I)
≤ C‖∂tu‖2L2(0,T ;Hmax{2,r−1}(I))

,

nT−1∑
k=0

‖∂xẽ
k+ 1

2

N ‖2 ≤ CN2(1−r)‖∂rxu‖2ωr−2,r−2 , ∀r ≥ 2 and ‖ẽ0‖ω ≤ CN−r‖u0‖Hr(I).

Therefore, using the above estimates and the triangular inequality in (2.18), the desired inequality is
obtained. This arguments complete the proof of Theorem 2.8. �

Remark 2.9. It is worth mentioning that the convergence analysis only for the KdV equation with the
same method was done in [27] for constant coefficients, that means, in (2.1) α(t) = 1 and β(t) = 0,
for t ∈ (0, T ). Obviously, estimate (2.15) implies the case proven in [27]. On the other hand, by using
dual–Petrov–Galerkin bases, [33, Theorem 2.2] involves a second–order term with constant coefficient β
in the range (− 1

3 ,
1
6 ), and α = 1. Note that our hypothesis H1 satisfies such parameter configuration

when, for instance, ε1, ε2 go to zero.
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2.4. Implementation scheme. In this paragraph we discuss the numerically implementation of the
fully discrete spectral method given in (2.7). We need to solve at each time level the problem of finding
ukN ∈ VN verifying

(uk+1
N , v) +

∆t

2
α(k∆t)(∂3xu

k+1
N , v)− ∆t

2
β(k∆t)(∂2xu

k+1
N , v) = (gk, v) ∀v ∈WN−1, (2.19)

where

gk = ukN −
∆t

2
α(k∆t)∂3xu

k
N +

∆t

2
β(k∆t)∂2xu

k
N + ∆tfk+

1
2 .

Therefore, by considering ukN (x) = (1 − x)
N−3∑
n=0

ûknφn(x) and taking as test function v = φm, for

m = [0, N − 3], the above identity can be written by

N−3∑
n=0

(
((1− x)φn, φm) + ∆tα(k∆t)(Ln+1, Lm+1)− ∆t

2
α(k∆t)((1− x)Lm+1, ∂xLn+1)

)
ûk+1
n

+
∆t

2
β(k∆t)

N−3∑
n=0

(
((1− x)Ln+1, Lm+1) + (Ln − Ln+2, Lm+1)

)
ûk+1
n

=
N−3∑
n=0

(RHS)nû
k
n + ∆t

N−3∑
n=0

((1− x)φn, φm)f̂
k+ 1

2
n ,

where (RHS)n corresponds to

(RHS)n = ((1− x)φn, φm)−∆tα(k∆t)(Ln+1, Lm+1) +
∆t

2
α(k∆t)((1− x)Lm+1, ∂xLn+1)

−∆t

2
β(k∆t)((1− x)Ln+1, Lm+1)− ∆t

2
β(k∆t)(Ln − Ln+2, Lm+1).

Based on the above representation, we build the matrices K,L,M and Q of size (N − 2)× (N − 2) with
the coefficients kmn, `mn, amn and qmn defined as follows:

kmn = ((1− x)Ln+1, Lm+1) + (Ln − Ln+2, Lm+1) =


2cm+1 m = n,
2cm − 2(m+ 1)cmcm+1 n = m+ 1,
−2(1 + (m+ 2)cm+1)cm+2 n = m− 1,
0 n ≤ m− 2,
0 n ≥ m+ 2.

amn = ((1− x)φn, φm) =


2c2m+1(cm + cm+2) m = n,
−2cm+1c

2
m+2(cm + (m+ 3)cm+3) n = m+ 1,

−2cm+1cm+2cm+3 n = m+ 2,
2(m+ 3)cm+1cm+2cm+3cm+4 n = m+ 3,
0 n ≥ m+ 4.

qmn = ((1− x)Lm+1, ∂xLn+1) =

 cm+1 − 1 m = n,
2(−1)m+n+1 n ≥ m+ 1,
0 n ≤ m− 1

and

`mn = (Ln+1, Lm+1) = diag(2Cm+1).

Therefore, the matrix representation of problem (2.7) is

AUk+1 = BUk + CFk+
1
2 , (2.20)
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with

A = M + ∆tα(k∆t)L− ∆t

2
α(k∆t)Q+

∆t

2
β(k∆t)K, (2.21)

and

B = M −∆tα(k∆t)L+
∆t

2
α(k∆t)Q− ∆t

2
β(k∆t)K, C = ∆tM. (2.22)

Remark 2.10. Since our approach is based in [27], the above mass matrix {amn} is the same, as well as
a part of the term gk given in (2.19). However, in [27] there are some typos and incomplete information
related to implementation that we have corrected in the present work.

In order to display the stability property for the fully discrete scheme (2.19), in Figure 1 we plot the
eigenvalues for the LPG discretization for two parametric configurations of α and β. In relation to [27]
where the stability analysis was done only for the KdV equation with α = 1, we observe that for the
KdVB equation with time dependent coefficients does not exist instable modes, neither. Nevertheless,
as mentioned in Remark 2.4, it is possible if the constrains upon the dispersion–dissipation parameters
established in Theorem 2.3 are verified. Indeed, the case where α is small enough (tends to zero) leads
to instables modes for small values of β and therefore, it is cannot be considered under this setting.
Additionally, Figure 1 allow us to visualize the effect caused by the interaction among dispersion and
dissipation parameters in the eigenvalues distribution of the spectral approximation.

-0.18      0

( )

-0.03

0.03

( )

-1    0

( )

-0.04

0.04

( )

Figure 1. Eigenvalues distribution of the spectral approximation for the KdVB equa-
tion, associated to the scheme (2.19) and matrix (2.21). In both cases N = 42, ∆t = 1,
and parameters (Left) α = 0.1,β = 0.1, (Right) α = 1,β = 0.3.

3. Numerical Results

In this section, we present results obtained from simulations of the LPG method for the KdVB equation
with dispersion–diffusion variable coefficients, see (2.1). Recall that aspects related to stability and
convergence have been previously studied in Theorem 2.3 and Theorem 2.8. In fact, those results depend
on, at least, four parameters, namely, N , ∆t, α and β. In order to seek the behaviors associated to
the theoretical descriptions and to separate the effects of each corresponding parameter, it is necessary
to split the numerical problem in several experiments with different interactions of the aforementioned
parameters. Indeed, we provide a proper calibration for the dispersion and diffusion parameters, which
in turn shows numerical evidences to particular cases presented in previous works.
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3.1. Experimental setup. In all the cases tested, we try to set a benchmark that allow to measure
every numerical experiment in a unique from. To be more exact, by considering that several variables
are involved into the analysis, makes it necessary to introduce a fair measure which would be able to give
precise information of the accuracy of the experiment. It is with this aim that we define the following
functions, which satisfy (2.1). Henceforth, the initial distribution is defined by

u(x, 0) = sin2(ax) sin(bx) (3.1)

and the source term as follows:

f(x, t) =
(
(c− b3α(t)) sin2(ax) + 6a2bα(t) cos(2ax)

)
cos(bx+ ct)

−aα(t)(4a2 + 3b2) sin(2ax) sin(bx+ ct)
+β(t)

(
−(2a2 cos(2ax)− b2 sin2(ax)) sin(bx+ ct)− 2ab sin(2ax) cos(bx+ ct)

)
,

(3.2)

where a = π and b = c = 12.
Taking into account the above data, the unique solution to (2.1) can be obtained analytically. In fact,

the explicit form of the solution is given by

u(x, t) = sin2(ax) sin(bx+ ct). (3.3)

Note that the source (3.2) really corresponds to a biparametric family, although its associated solution
(3.3) is free of parameters. In other words, all information concerning to the dispersion–dissipation
parameters is located in the source instead of the solution, which allow us to create uniformly measurement
errors respect to the analytical solution. Therefore, we define the error ε in the norms Lp (1 ≤ p < ∞)
in space and L1 in time as follows:

ε :=
∆t

N

nT∑
k=0

 N∑
j=0

∣∣u(xj , tk)− ukN (xj)
∣∣p1/p

. (3.4)

On the other hand, it is worth pointing out that the values of a, b and c have been taken from [27], where
the authors defined (3.1)–(3.3) for the KdV equation with dispersion coefficient α = 1.

Here, xj represents the specific position defined by the Chebyshev–Gauss–Lobatto points [4], whereas
tk is the temporal discretization defined in the previous section. Clearly, our work constitutes an extension
to the linear model given in [27].

3.2. Temporal and spatial discretization. The main task in this paragraph consists on providing evi-
dence according to Theorem 2.8. Since the spatial and temporal approximations show rate of convergence
linked to the dispersion and diffusion parameters, we pretend to observe both tendencies throughout the
same numerical experiment defined by (3.1)–(3.3), but using different parametric configurations depend-
ing on the case.

First, we focus on the temporal convergence of the method. As starting point, we develop a massive
experiment fixing the number of modes and the dispersion parameter, namely, N = 32 and α = 1,
respectively. Besides, for five different β values, e.g. β = {0, 0.2, 0.4, 0.6, 0.8}, we carry out 20 simulations
of T = 2 seconds of time by fixing steps ∆t in the range {(i+1)10−4 : i = 1, . . . , 20}. In order to achieve a
better visualization and without less of generality, we only depict three different cases of β values in Figure
2 (Left), where each curve represents a dispersion parameter β and every mark shows the error obtained
upon its corresponding temporal step ∆t. Note that, by fixing the dispersion coefficient at α = 1, we
clearly observe a convergence of the value of ε to zero, although its rate of convergence is affected by the
β dissipation coefficients. Motivated by this, it is interesting to study the order of convergence for each
curve by using a least squares fit. Table 1 shows the five different β dissipation coefficients where both
the order of convergence and the extrapolated error values are recorded. We can see that in average the
temporal convergence tends to 2 as expected from theoretical result, see (2.15).
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Figure 2. Each mark corresponds to the error ε in L1(L2)–norm for α = 1 and three
different β values. (Left) temporal convergence and (Right) spatial convergence.

Table 1. Analysis of the temporal convergence using least squares method, and fitting
the solution of the numerical problem by ukN = u(xn, tk)[1+(∆t)order]. In all simulations
we fix α = 1 and N = 32. Here, the extrapolated error values using (3.4) with p = 1 and
p = 2 as well as their corresponding convergence orders are recorded.

β L1(L1) − norm order L1(L2) − norm order

0 0.01335901 1.87 0.00010075 2.80
0.2 0.04785512 1.90 0.00046410 2.72
0.4 0.16367134 2.10 0.00169221 2.54
0.6 0.39841512 2.48 0.00316313 2.23
0.8 0.71474315 2.62 0.00485123 1.71

Table 2. Error analysis in L1(L2)–norm for seven different values of N and five different
values of β. Besides, α = 1 and ∆t = 10−4 seconds.

β N = 14 N = 16 N = 18 N = 20 N = 22 N = 24 N = 26

0 0.00645621 0.00135455 0.00066981 0.00011939 0.00015875 0.00010339 0.00008585
0.2 0.00691887 0.00140829 0.00069669 0.00018076 0.00020508 0.00016183 0.00014666
0.4 0.00764791 0.00153235 0.00081798 0.00042376 0.00038715 0.00036853 0.00035271
0.6 0.00865866 0.00183839 0.00119356 0.00091525 0.00088213 0.00083909 0.00080551
0.8 0.00983571 0.00240629 0.00185255 0.00161797 0.00155112 0.00148371 0.00142658

Now, the spatial convergence analysis is carried out upon the same numerical experiment but, fixing
both the temporal sampling to ∆t = 10−4 seconds and the dispersion parameter to α = 1. Again, the
β parameter is evaluated at β = {0, 0.2, 0.4, 0.6, 0.8} whereas, the number of nodes, N , is progressively
selected in the range 11 ≤ N ≤ 32. The results are depicted in Figure 2 (Right), where we observe a sharp
accuracy convergence around 14 ≤ N ≤ 22 nodes. In fact, Figure 2 (Right) allow to deduce that the
convergence order is much greater than two, it makes imposible to create any confident approximation
based on least squares fitting. To precise this feature, we show in Table 2 the error values in the L1(L2)–
norm for five different β values and seven different values of N . In concordance with our theoretical
result on convergence, Theorem 2.8, we should note that for any value of N , the dispersive case (β = 0)



DISPERSIVE EQUATIONS WITH TIME–DEPENDENT COEFFICIENTS 13

is always more accurate than the other choices of β values. In addition, it is worth mentioning that
the results shown in Figure 2 (Right) and in Table 2 are not enough to establish which is exactly the
convergence order, r, and the dependence of N in the accuracy of the results. Also, it is true that we
observe a faster tendency in the accuracy than for the temporal convergence, but the fact that r is only
bounded and cannot be fitted as a simple number, it makes necessary to broad the vision and to study
the spatial convergence through other considerations always in completely agreement with the theory
already exposed.

Figure 3. The numerical representation of the initial condition, (3.1), represented in
(Left) the nodal–domain, u0N , and (Right) the modal–domain, û0n. In both cases we use
N = 80.

Considering the scheme developed in subsection 2.4, it is important to recall that our approach con-
stitutes a global method for the space discretization and, therefore, the computed quantities are ûkn, and
not the spatial values ukN . Thus, the information is obtained from the modal basis (φ–basis), it means
that all the modes of the φ–domain influence in each spatial node defined in the mesh. Therefore, it
turns out interesting to observe which form takes the signal represented in the modal basis (φ–basis).
More precisely, we focus the analysis on both, the initial condition and the source term studying the
main features of their modal representation. First, we take the initial condition (3.1). Note that Figure
3 (Left) displays the snapshots of the signal into the nodal space, u0N , whereas Figure 3 (Right) repre-
sents the transformed signal into the φ-domain, û0n. The most interesting feature appears when on the
right–hand side of Figure 3, implying that the main information of the signal is contained in φi ≤ 22
modes, which means that the initial condition u0N can be constructed with no more than 22 polynomial
terms φi. Again, if we observe Figure 2 (Right) and the values of Table 2, it emerges a strong correlation
between the spatial convergence and the modal representation of Figure 3 (Right) already commented.

Otherwise, the source term presents more complications making necessary to refine the analysis. In
contrast to the initial condition, the source term (3.2) does not satisfy the boundary conditions stated
onto the problem (2.1), since it is only defined at the interval (−1, 1). We highlight this fact because by

construction, the φ–domain transformation between the source term f
k+ 1

2

N and the modal source f̂
k+ 1

2
n

only involves the homogeneous Dirichlet boundary conditions and not the Neumann conditions. Indeed,

contrary to the spectrum of the initial condition, for the modal signal f̂
k+ 1

2
n , i.e., Fk+

1
2 , the shape of their

spectra always increases when N is varied, suggesting that they require of infinite modes in order to be
fully characterized. Moreover, from (2.20)–(2.22), we observe that the modal vector Fk+

1
2 is multiplied

by the mass matrix, M , before it is introduced into the implementation scheme. Thus, the source term is

transformed into a projected source term, namely, CFk+
1
2 . It is worth mentioning that the transformation

of Fk+
1
2 into the projected source term CFk+

1
2 provides similar spectra than Figure 3 (Right) but, in
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Figure 4. In all plots, α = 1, β = 0.3 and ∆t = 10−5 seconds. Here, we check the
temporal iteration k = 1000. The number of polynomial terms used are (Top row)
N = 32, (Center row) N = 64 and (Bottom row) N = 80. (Left column) the modal

representation of the projected source term CFk+
1
2 . (Right column) the numerical

solution ûk+1
n and the analytical solution (3.3) in the φ–space.

that case, they also contain an artifact that appears at high modes always close to N , independently of
its value.

To illustrate this point, we present some results in Figure 4. All the plots are obtained through
simulations with parameters α = 1, β = 0.3 and ∆t = 10−5 seconds. Furthermore, we represent the
data at the temporal iteration k = 1000. The results represented in each row are obtained with N = 32,
N = 64 and N = 80 polynomial terms, respectively. Respect to the left column, this displays the results

of three different modal spectra of CFk+
1
2 , whose modal distribution is concentrated in the same range

of polynomial terms, φi ≤ 22 modes. However, we clearly observe an artifact that always appears at the
final modes of the plots, no matter the value of N is employed. It is important to inform that this error
has been deeply analyzed by numerical simulations obtaining the following conclusions. In addition, the
case where the artifact is smaller is observed for α = 1, β = 0, independent of ∆t, N , meanwhile, for
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different values of β considerably worsen the results. Moreover, the artifact behaves as expected in the
previous theory since, for either high values of N or small temporal steps, it tends to vanish. On the
other hand, the right column shows the outputs ûk+1

n ( that is, Uk+1) and their corresponding analytical
values, (3.3). In this one the analytical solutions are illustrated with solid lines, showing similar spectra
than the initial data given in Figure 3 (Right). In all the cases, the signals are represented with no
more than 22 polynomial terms independently of the N value and note that, for the rest of the temporal
iterations k, the solution of the problem (3.3) may change the shape of the signal depending on the k
value, but always preserving the limit φi ≤ 22 polynomial terms previously noticed. Concerning the
signals of Uk+1, which are illustrated with dashed lines, these always differ from the analytical results in

the high modal range presenting a strong correlation with the signals of CFk+
1
2 depicted in Figure 4 (Left

column). We observe that the artifact generated in the projected source term (CFk+
1
2 ) is propagated

into the numerical solution Uk+1 introducing numerical errors at high modes that are globally acquired
in uk+1

N .

3.3. Dispersion and diffusion parameters calibration. Once understood the behavoir of the numer-
ical approximation that has developed here, we are able to go one step forward and observe the influence
of the dispersion and diffusion parameters in their whole ranges. As mentioned, the KdVB equation
is considered to investigate the impact of bottom configurations on the free surface waves and describe
a wide variety of phenomena arise in plasma physics, among others. Motivated by those applications
and using as starting point the references [15, 26, 16, 22, 20, 21], in this subsection we develop three
parametric configurations among the coefficients α and β. Although several constant physics have been
simplified in our analysis, all profiles below are consistent with the previous sections and the references
above mentioned.

Henceforth, all color graphics display error estimates among the analytical and numerical solution for
different parameter configurations. In addition, those errors are depicted in decibels (dBs)(i.e., 20 log10 ε),
where the color white represents regions with low–error values whereas dark color shows high numerical
errors. In fact, errors around −85 dBs mean that ε ∼ 5 · 10−5, whereas errors of −20 dBs mean that
ε ∼ 10−1. Finally, all experiments have been carried out by considering N = 32 nodes.

Figure 5. A color graph where the x-axis is the β parameter and the y-axis represents
the different temporal steps ∆t. Color white denotes low errors meanwhile dark regions
mean high errors.
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First configuration (α = 1 and β ∈ [0, 0.8]). In this case we extend the analysis associated to the
temporal convergence by considering a massive experiment where the accuracy (3.4) is again measured
for time steps ∆t in the range {(i+ 1)10−4 : i = 1, . . . , 20}. Moreover, the parameter β is defined in the
range {(i− 1)4 · 10−2 : i = 1, . . . , 20}. Lastly, we fix the simulation time to T = 2 seconds. Thus, 20× 20
(β ×∆t) simulations are carried out when the dispersion coefficient is constant, namely, α = 1. Figure 5
shows the results obtained throughout the massive numerical experiment described above.

In general terms, the results of the experiment seem reasonable and the spatial–temporal convergence
of our approach is easily observed in a wide range between β and ∆t. Note that there is a clear dependence
in the errors from the dissipation coefficient β. Indeed, as observed in Theorem 2.8, the inclusion of a
second order derivative in the KdV equation leads to a suboptimal convergence for either the temporal
or spatial discretization. Besides, with this particular configuration among the dispersion and diffusion
parameters, note that Figure 5 also exhibits a numerical perspective to the theoretical assumption H1
given in (2.14).

Second configuration (α ∈ (0.2, 1.15], β ∈ [0.2, 0.65)). We present another massive numerical ex-
periment of 20 × 20 simulations in Figure 6. To be more precise, the dispersion parameter α belongs
to the set {0.2 + (i − 1)5 · 10−3 : i = 1, . . . , 20} and the dissipation parameter β belongs to the set
{(i − 1)3.25 · 10−2 : i = 1, . . . , 20}. Taking into account the above sets, we depicted two gray–scaled
graphs where the color again represents the error ( see (3.4) with p = 2) associated to the specific sim-
ulation computes. Figure 6 (Left) shows the results for ∆t = 10−3 seconds and Figure 6 (Right) for
∆t = 10−4 seconds.

Additionally, we have selected α ∈ (0.2, 1.15] and β ∈ [0, 0.65) because we pretend to guarantee results
with accuracy inside of the range of [−85,−20] dBs. Under these intervals, we present the error values
in two different cases of ∆t, as mentioned ∆t = 10−3 and ∆t = 10−4 seconds. Note that, in both graphs,
the shape in the color variation is preserved whereas the amount of error in Figure 6 (Left) is constantly
increased (i.e., homogeneously darker) than for the results of Figure 6 (Right) which errors are obtained
with a smaller temporal discretization. We also highlight that, independently of the temporal step
employed, values of α < 0.2 provide critical errors of ε, which are out of the accuracy bounds previously
established. Moreover, we also restrict the range of β to 0.65 because the errors become critical, i.e.,
up to −20 dBs, if we consider simulations with a parameter α < 1/3. To finish this case, it is worth
pointing that these results are in full concordance with the established relation H1 among the dispersion
and diffusion parameters.

Figure 6. Color graphs where the x–axis is the β coefficient and the y–axis represents
the different coefficients α. Color white denotes low errors whereas dark regions mean
high errors ε. Two temporal steps are considered: (Left) Fixing ∆t = 10−3 seconds and
(Right) fixing ∆t = 10−4 seconds.
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Third configuration (α and β with temporal–dependence). To conclude, we develop several experiments
considering time–dependent parameters. As mentioned at the beginning of this section, the chosen
temporal profiles are based upon the papers found in the literature. From [26] and [22] and by simplicity,
some physical data have been modified. More precisely, we analyze the following two cases:

• Case 1. α(t) = 5 cos

(
πt

4

)
, β(t) =

1

cos

(
πt

4

) , ∀t ∈ [0 1].

• Case 2. α(t) = (t+ 1)2 , β(t) =
0.5

t+ 1
, ∀t ∈ [0 1].

In both cases, we introduce these parameters into the implementation scheme (2.20) and also considering
the initial condition (3.1) and the source term (3.2). Recall that the α and β profiles defined above
explicitly appear in the source term (3.2), and whose solution (3.3) is free of the dispersion and diffusion
parameters. As mentioned, these specific conditions make possible to define a benchmark (3.4), which
is either absolute or representative measure to fit the accuracy of these time–variation parameters into
the numerical scheme (2.20). Therefore, we compute the error, ε, in each case by using three different
temporal samplings, ∆t = {10−2, 10−3, 10−4} seconds. Moreover, we define two measures that give
proper error bounds useful to easily calibrate the accuracy of the scheme when those time–dependent
parameters are used. Therefore, we define both, the upper and the lower bound by considering the
theoretical assumption H1 (see theorem 2.8) as well as the numerical results from Figure 6. Briefly
speaking, the main idea consists in providing a reliable error interval that permits to establish a simple
calibration of the method through simulations with constant parameters. To do that, we define the upper
error, denoted by εmax, and the lower error, denoted by εmin, by considering the constant pairs (ᾱ, β̄)
that make maximum (resp. minimum) the error ε. Note that these pairs (ᾱ, β̄) would strongly depend on
the profile defined and their values would be different at each case treated. For example, if we consider
the Case 1, the maximum error, εmax, is obtained when ᾱ = 5/

√
2 and β̄ =

√
2, whereas the minimum

error, εmin occurs for ᾱ = 5 and β̄ = 1. For the Case 2, εmax is obtained with a simulation with ᾱ = 1
and β̄ = 0.5, whereas εmin is achieved when ᾱ = 4 and β̄ = 0.25.

Table 3. Analysis of the error, ε and the upper and lower-bound error, εmax and εmin
respectively. The three quantities are measured considering 1 second of time simulation
and N = 32 nodes.

Case 1 ∆t = 10−4 ∆t = 10−3 ∆t = 10−2 Case 2 ∆t = 10−4 ∆t = 10−3 ∆t = 10−2

εmax 0.00070345 0.00220118 0.00744720 εmax 0.00027205 0.00087034 0.00322214
εmin 0.00018275 0.00059578 0.00251925 εmin 0.00005478 0.00019861 0.00134123
ε 0.00029501 0.00095356 0.00341955 ε 0.00009874 0.00032937 0.00181271

The ε results of both cases and their corresponding error bounds, εmax and εmin, are recorded in Table
3 considering three different temporal steps. It is worth pointing out that the results exhibit in Table 3
are in full concordance with the previous explanations and the error, ε, is always within the error interval
[εmin, εmax], no matter which temporal step is employed.

4. Conclusions

The linear KdVB equation with non–periodic boundary conditions and time–dependent coefficients
has been numerically analyzed using the LPG method for the spatial discretization, and a finite dif-
ference scheme for the temporal behavior. The core of our analysis are new estimates related to the
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stability and convergence problems for this kind of equations, which now involve nonconstant coeffi-
cients. Specifically, the convergence result proved in Theorem 2.8 shown a trade off between dispersion
and diffusion parameters added into the model with a view to establishing upper estimates in the form
Cα(N−r + (∆t)2) +Cβ(N1−r + (∆t)2), where Cα ≈ (minα(t))−1, Cβ ≈ ‖β‖L∞([0,T ]) and r ≥ 2. Respect
to the stability, it can swing sharply if the dispersion coefficient α(t) is small enough, see Theorem 2.3.

The computed results of the KdVB equation (2.1) exhibit the high accuracy of the proposed method
based in the Euler scheme–LPG approximation. This novel time–dependent scheme has the ability
to incorporate the physics aspects into the analysis and allows a better comprehension with the original
evolution equation. Moreover, the effects caused by the dispersion and diffusion parameters shown ranges
of interaction between them, which in turn are compatible with the theoretical results. In addition, several
parametric configurations among these coefficients were calibrated. To the best of our knowledge, our
framework constitutes a first approach for studying from a numerical point of view dynamic systems of
odd–order dispersive equations with coefficients that can vary in time. The results obtained in this paper
shown the role and trade off of these temporal parameters into the model.

Finally, there are many ways to extend these ideas to future works. For example, a first future work
could consider nonlinearity into the model (2.1) with its respective coefficient, and it is associated to
the convective term γ(t)uux, with γ(t) 6= α(t), γ(t) 6= β(t). Nevertheless, it worth mentioning that
the nonlinear analysis requires additional techniques that are not considered in this work. We invite
readers to review the references for more details on the nonlinear case. For this kind of systems, a details
comparison of the LPG approach to other methods in terms of accuracy and efficiency would also be of
interest. In a more general sense, similar ideas may also be fruitful in considering evolution dynamics
described by PDEs including time parametric dependencies located in its coefficients.
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