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INVERSE SOURCE PROBLEMS AND CONTROLLABILITY FOR THE STOKES AND
NAVIER-STOKES EQUATIONS

This thesis is focused on the Navier–Stokes system for incompressible fluids with either
Dirichlet or nonlinear Navier–slip boundary conditions. For these systems, we exploit some
ideas in the context of the control theory and inverse source problems. The thesis is divided
in three parts.

In the first part, we deal with the local null controllability for the Navier–Stokes system
with nonlinear Navier–slip conditions, where the internal controls have one vanishing com-
ponent. The novelty of the boundary conditions and the new estimates with respect to the
pressure term, has allowed us to extend previous results on controllability for the Navier–
Stokes system. The main ingredients to build our result are the following: a new regularity
result for the linearized system around the origin, and a suitable Carleman inequality for the
adjoint system associated to the linearized system. Finally, fixed point arguments are used
in order to conclude the proof.

In the second part, we deal with an inverse source problem for the N - dimensional Stokes
system from local and missing velocity measurements. More precisely, our main result estab-
lishes a reconstruction formula for the source F (x, t) = σ(t)f(x) from local observations of
N − 1 components of the velocity. We consider that f(x) is an unknown vectorial function,
meanwhile σ(t) is known. As a consequence, the uniqueness is achieved for f(x) in a suitable
Sobolev space. The main tools are the following: connection between null controllability and
inverse problems throughout a result on null controllability for the N - dimensional Stokes
system with N − 1 scalar controls, spectral analysis of the Stokes operator and Volterra in-
tegral equations. We also implement this result and present several numerical experiments
that show the feasibility of the proposed recovering formula.

Finally, the last chapter of the thesis presents a partial result of stability for the Stokes
system with Dirichlet boundary conditions and when local and boundary measurements are
available, for a source F (x) = R(x)g(x), where R(x) is a known vectorial function and g(x) is
unknown. This result involves the Bukhgeim-Klibanov method for solving inverse problems
and some topics in degenerate Sobolev spaces.
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PROBLEMAS INVERSOS DE FUENTE Y CONTROLABILIDAD PARA LOS
SISTEMAS DE STOKES Y NAVIER–STOKES

Esta tesis esta enfocada en el sistema de Navier–Stokes para fluidos incompresibles con
condiciones de borde Dirichlet y Navier-slip no lineales. Para estos sistemas, exploramos
algunas ideas en el contexto de la teoria de control y problemas inversos de fuente. La tesis
esta dividida en tres partes.

En la primera parte, estudiamos la controlabilidad local a cero para el sistema de Navier–
Stokes con condiciones Navier-slip no lineales, donde los controles tienen una componente
escalar nula. La novedad de las condiciones de borde y las nuevas estimaciones para el ter-
mino de presión, nos ha permitido extender anteriores resultados en controlabilidad para el
sistema de Navier–Stokes. Las ideas principales para construir nuestro resultado principal
son: un nueva resultado de regularidad para el sistema linealizado alrededor de cero, una
nueva desigualdad de Carleman para el sistema adjunto asociado al sistema linealizado. Por
ultimo, resultados de la teoŕıa de punto fijo son usados para concluir la demostración.

En la segunda parte, abordamos un problema inverso de fuente para el sistema de Stokes en
dimension N a partir de mediciones locales y faltantes de la velocidad. Precisamente, nuestro
resultado principal establece una formula de reconstrucción para la fuente F (x, t) = σ(t)f(x)
a partir de observaciones locales de N − 1 componentes de la velocidad. En la fuente consid-
erada, f(x) es una función vectorial desconocida, mientras que σ(t) es una función escalar
conocida. Como una consecuencia del resultado anterior, la unicidad de f(x) en cierto es-
pacio de Sobolev es obtenida. Las principales herramientas son: a resultado sobre control
a cero para el sistema Stokes con N − 1 controles escalares, análisis espectral del operador
de Stokes y ecuaciones integrales de Volterra. La implementación de nuestros resultados
también es presentada junto con varios ejemplos numéricos que muestran la factibilidad de
nuestra formula de reconstrucción.

Finalmente, el último capitulo de la tesis presenta un resultado parcial de estabilidad
para el sistema de Stokes a partir de mediciones internas y de borde de una componente de
velocidad, para una fuente F (x) = R(x)g(x), donde R(x) es una función vectorial conocida y
g(x) es desconocida. Este resultado involucra el método de Bukhgeim-Klibanov para resolver
problemas inversos y algunos tópicos en espacios de Sobolev degenerados.
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Chapter 1

General introduction

In many areas of science and technology the mathematical analysis of fluid dynamics plays an
important role. For instance, in ship industry, turbomachninery, airplane industry, meteorol-
ogy, oceanography, medicine, among others. We can begin quickly saying that a fluid consists
in a large number of molecules in motion without a precise structure (different to a solid). A
first approach to study a fluid might involve writing down the equations of motion for each
one of the particles by considering their interactions (for instance, collisions, characterized
by the mean free path, but also long-range interactions). In many physical situations, if the
mean density of the fluid is not too low, i.e., if the characteristic lengths of the problem are
large compared to the mean free path of the particles, then the fluid can be considered as a
continuous medium. Thus, the movement of the particles can be considered as a whole and
not independently for each particle. Hence, we can define quantities that characterize the
system: velocity, density, pressure, and so on.

Additionally, in fluid mechanics there are two classical coordinate system in which the var-
ious equations of motion can be written: Lagrangian and Eulerian coordinates. Lagrangian
coordinates are associated with a fluid particle (or a fluid volume element) and follow it
throughout its evolution. By contrast, Eulerian coordinates are the coordinates of the fixed
reference frame associated with the experiment. In other words, the Eulerian description is
based on the determination of the velocity of the fluid particle passing through a point x at
time t. The Eulerian approach introduced by Euler in the eighteenth century, will be used
in this work as the usual framework to study its controllability properties.

1.1 Navier-Stokes equations for an incompressible fluid

Inside of the fluid mechanics we find the Navier-Stokes equations of fluid dynamics, which
are a formulation of Newton’s laws of motion for a continuous distribution of matter in the
fluid state, characterized by an inability to support shear stresses. In this thesis, we present
a derivation for the Navier–Stokes system from a viewpoint of the physics elements contained
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in the equations, although they may be derived systematically from the microscopic descrip-
tion in terms of a Boltzmann equation, with some additional fundamental assumptions. See
for instance [Bac67], [Tri12], [Nav23] and[DG95].

The equations of motion

The dependent variables in the so-called Eulerian description of fluid mechanics are the
fluid density ρ(x, t), the velocity vector field u(x, t), and the pressure field p(x, t). Here, an
x ∈ RN is the spatial coordinate in a N - dimensional space, with N = 2 or N = 3.

A infinitesimal element of the fluid of volume δV located at position x at time t has mass
δm = ρ(x, t)δV and it is moving with velocity u(x, t) and momentum δmu(x, t). The normal
force directed into the infinitesimal volume across a face of area nδa centered at x, where n
represents the unit vector normal to the face, is −npδa. The pressure is the magnitude of
the force per unit area, or normal stress, imposed on elements of the fluid from neighboring
elements, see Figure 1.1.

δz

δx

δy
X

b

b

b

b

n

x

z

y

Figure 1.1: A fluid element of volume δV = δxδyδz located at position X. The top surface’s
outward pointing normal n is shown.
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On the other hand, the rate of change of a quantity given by the function f(x, t) at a fixed
point x in space is simply the partial derivative with respect to time:

df(x, t)

dt
.

However, the rate of change of the same quantity at x, as measured by an observer moving
with velocity u is:

df(x, t)

dt
= lim

δt→0

f(x+ uδt, t+ δt)− f(x)

δt
=
∂f(x, t)

∂t
+ u · ∇f(x, t).

We refer to this rate of change with respect to an observer moving with the fluid, as the
convective derivative. Then, we have

df(x, t)

dt
:=

∂f(x, t)

∂t
+ u · ∇f(x, t).

Now, we will use the previous definition in the following. Consider the volume δV of an
element of mass δm as the system involves. Conservation of mass means that δm does not
change for this element. If the element compress or expands then the volume and density
will change, but the mass is fixed:

dδm

dt
= 0. (1.1)

The rate of change of the volume occupied by δm is given by (see [Tri12]):

dδV

dt
= (∇ · u)δV. (1.2)

Hence the divergence ∇·u of the velocity vector field is the local rate of change of the volume
of elements of mass. In terms of the density ρ this corresponds to:

dρ

dt
=

d

dt

δm

δV
= − δm

(δV )2

dδV

dt
= −ρ∇ · u. (1.3)

Then, using the previous definition of convection derivative, we see that conservation of mass
manifests itself as the continuous equation:

0 =
∂ρ

∂t
+∇ · (ρu). (1.4)

From Newton’s second Law of motion, which states that the rate of change of momentum
equals the net applied force, can be applied to each element of mass in the fluid. Thus, in
the absence of any externally applied forces, the net force δF acting on each element of mass
is due to the pressure field. Then, the component of force in the x direction is (see Figure
1.2):

δF1 = p(x− îδx/2, t)δyδz − p(x+ îδx/2, t)δyδz = − δp
δx
δV. (1.5)

Therefore, Newton’s second law for the element of mass δm at position x and time t is

d(δmu(x, t))

dt
= δF = −δV∇p. (1.6)
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b

b

p(x− δx/2, y, z)δyδz

δx

δy

δz

p(x+ δx/2, y, z)

Figure 1.2: The pressure force acting on the front and rear of a fluid element

Recalling the equation of conservation of mass (1.1) and dividing through by δm we deduce
the equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p, (1.7)

called the Euler’s equations. Therefore, by combining the Euler’s equations and the continu-
ity equation (1.4), we obtain N + 1 evolution equations for the N + 2 dependent variables
(N components of the velocity u, the density ρ and the pressure p). What remains is to
provide a relationship between the density and pressure. Typically this given in the form of
a thermodynamic equation of state. For example, in an ideal gas at constant temperature,
p ≈ ρ.
A significant simplification is achieved by considering fluids which are effectively incompress-
ible, but, does this mean?. Physically, this condition is applied to problems where all the
relevant velocities are much smaller than the speed of sound in the fluid. The continuity
equation (1.4) then implies that the derivative of the density vanishes, so the density of each
fluid element never changes from its initial value, so that

ρ(x, 0) = cte⇒ ρ(x, t) = cte.

In synthesis, the flow of a fluid is said to be incompressible if one of the following equivalent
properties is satisfied (see [BF12]):

i) The volume of any fluid element is constant along the time.

ii) The velocity field u is divergence-free (it is also said to be solenoidal):

∇ · u = 0.

iii) The density ρ is constant along the trajectories associated with the velocity field u.
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Then, Euler’s equations for an incompressible homogeneous fluid are:

∂u

∂t
+ u · ∇u+

1

ρ
∇p = 0 (1.8)

and

∇ · u = 0, (1.9)

where the density is now a parameter and moreover we have N + 1 equations for the N + 1
unknowns variables. Observe that a flow can be incompressible even if the density is not
constant. It is only required that the density of a particle of fluid remain constant during the
evolution. As an example of a non homogeneous incompressible flow we can consider water
in the ocean, whose density depends on the salinity but which is nevertheless incompressible.

In order to derive the Navier-Stokes equations, it is necessary to consider the viscosity
in the fluid. Viscosity is a measure of the diffusion of momentum due to the microscopic
molecular nature of real fluids, and its effect is to produce a resistance to shearing motions.
As such, it is a frictional force with its origins in the microscopic interactions between the
atoms or the molecules making up the fluid. Its net effect is to dissipate in an organized
way, macroscopic forms of energy - the kinetic energy in the flow field - and convert it to the
disorganized, microscopic form of energy, heat ( see [Tri12] for more details). Shearing forces
in continuum mechanical systems are described by the stress tensor. The tensional nature
of these forces results from the fact that there are two directions associated with each such
force, the direction of the force itself and the orientation of the area across which the force
acts.
Consider a rectangle shaped portion of fluid, centered at the point (x, y, z) with side lengths

(δx, δy, δz), as Figure 1.3. The component σij of the stress tensor σ is the force per unit
area in the jth direction acting across an area element whose normal is in the ith direction.
Forces in the direction of the normal to an area element are associated with the pressure,
while those that acts in the plane of the element are associated with shear stresses. Newton’s
third law implies that forces of equal magnitude and opposite direction act on the sides due
to the matter on the sides. Adding these forces, the net force on the fluid element in the jth
direction is

δFj = σ1j(x+ δx/2, y, z)δyδz − σ1j(x− δx/2, y, z)δyδz
+σ2j(x, y + δy/2, z)δxδz − σ2j(x, y − δy/2, z)δxδz
+σ3j(x, y, z + δz/2)δxδy − σ3j(x, y, z − δz/2, z)δxδy.

Hence the force per unit volume acting at a point in the fluid due to stress within the fluid
is the divergence of the stress tensor, i.e.,

δF

δV
= ∇ · σ.

When the torque acts on the volume element due to the stress tensor σ, the z component of
torque is:

N3 = k ·
∑
faces

r × δF = (σ12 − σ21)δxδyδz

5
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X

δx

δy

σ22(x, y + δy/2, z)

σ11(x+ δx/2, y, z)

σ21(x, y − δy/2, z)

Figure 1.3: Several components of the stress tensor acting on a fluid element located at X.
The force acts on the sides of the faces of the element as indicated by the positions of the
vectors in red. For example, the horizontal force acting on the element due to the stress at
the bottom face is −σ21(x, y − δy/2, z)δxδz.

and the z component of the inertia tensor is

I33 =
1

24
(δx2 + δy2)ρδxδyδz.

Then, typical associated angular accelerations are

N3

I33

≈ σ12 − σ21

ρ

1

δx2 + δy2
.

The necessity if a symmetric stress tensor is then apparent in order to realize a consistent
continuum limit as δx→ 0, δy → 0 and δz → 0.
The stress tensor can be represented into portions due to the pressure p and the symmetric
stress tensor Tij, that is

σij = −δijp+ Tij, (1.10)

where δij is the Kronecker Delta function. Thus, the general form of the equation of motion
for the velocity vector field u, referring to (1.5)-(1.7) is

∂u

∂t
+ u · ∇u+

1

ρ
∇p =

1

ρ
∇ · T. (1.11)

The rate of strain tensor may be defined as that controlling the evolution of the relative
positions of points in a fluid element. Let δx denote infinitesimal displacement of two points
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in the fluid, one at x and the other at x+ δx. The rate of change of |δx|2 corresponds to:

d

dt
|δx|2 = 2δx · [u(x+ δx)− u(x)] = δxi

( ∂ui

∂xj
+
∂uj
∂xi

)
δxj = δx ·D · δx,

where D represents the symmetric rate of the strain tensor (or symmetrized gradient). On
the other hand, the relationship between D and T is (see for instance [BF12]):

T = αD + βTr(D)I, (1.12)

where I is the unit tensor and the constant α, β are material parameters. The components
of the viscous force per unit volume are then

(∇ · T )i = α∆ui + (2β + α)
∂

∂xi

∇ · u.

From the incompressible condition (1.9) and previous identity, we obtain the incompressible
Navier-Stokes equations

∂u

∂t
+ u · ∇u+

1

ρ
∇p = ν∆u (1.13)

∇ · u = 0, (1.14)

where ν is the kinematic viscosity. Compared to the incompressible Euler equations, the net
effect of the linear coupling between stress and rate of strain is to introduce the “ diffusion”
term at the right-hand side of (1.13). The diffusion of momentum between neighboring ele-
ments of the fluid is indeed a new ingredient in the incompressible Navier-Stokes equations,
but there is also the matter of initial and boundary conditions that we will see in the following
paragraph.

Impermeable boundaries and initial condition

If the fluid is confined to a fixed region of space Ω bounded by ∂Ω, the fluid cannot
cross the rigid boundaries. Thus, think that perhaps the simplest type of boundary is an
impermeable wall is appropriate, such as the side of a wake-tank or the hull of a ship. If the
boundary ∂Ω is stationary, then the appropriate boundary condition for an fluid is

u · n = 0 on ∂Ω,

where n represent the unit outward normal vector to the boundary. This ‘no-flow’ condition
states that the fluid does not flow through the boundary. An fluid can ‘slide’ over an imper-
meable boundary, and the tangential velocity is, in general, nonzero. However, observing that
the Navier-Stokes equation contain second-order spatial derivatives, they require additional
boundary conditions. The most usual used condition is a Dirichlet boundary condition for
the velocity, represented by

u = ub on ∂Ω.

When ub = 0, it is called an homogeneous Dirichlet boundary condition or a no-slip condition
(this means that the fluid ‘sticks’ to the boundary).

7



On the other side, there are numerous researchers which have cast doubts on the universality
of the no-slip boundary conditions, showing that under certain circumstances fluid slip might
occur at the solid boundary (see for instance [Bac67], [LBS07]). In presence of slip conditions,
C.L. Navier proposed in 1823 the Navier-slip boundary conditions by establishing that the
component of velocity tangential to the surface should be proportional to the tangential
component of the rate of stress at the surface, i.e.,

u · n = 0, (σ(u, p) · n)tg = k(u)tg on ∂Ω,

where σ was introduced in the previous section and tg stands for the tangential component
of the corresponding vector field, i.e. (see [Nav23]):

wtg = w − (w · n)n.

In most of the situations, the Navier-slip boundary condition can be reduced to the no-
slip boundary conditions due to extremely small slip length. However, in some cases as
in the driven cavity flow problem or some turbulence problems, it has been shown that the
Navier-slip boundary condition is valid and removes un-physical singularities (see for instance
[Bac67], [LBS07] and [Pan06]).

Finally, as the Navier-Stokes equations are an unsteady model, it is required to impose
initial conditions in order to define the evolution of the system, evidently in a suitable Banach
space. It has no mathematical meaning to impose an initial value for the pressure because
this unknown has the role of the Lagrange multiplier associated with the incompressible con-
dition and thus, is defined in some indirect way, see for more details the books [Tem01] and
[BF12].

In this thesis we consider homogeneous Dirichlet boundary conditions for the inverse
source problems of the Stokes system in Chapter 3 and Chapter 4, and nonlinear Navier-slip
boundary conditions for the control problem presented in Chapter 2.

On the existence, uniqueness and regularity of solutions

There is an extensive literature on this subject since the pioneer work of J. Leray in
[Ler33]-[Ler34], where he introduced many fundamental ideas. In [Ler34] he constructed a
global (in time) weak solution and a local strong solution of the initial value problem when
Ω = R3. On the other side, H. Hopf proved the existence of a global weak solution of
the initial-boundary value problem. Such solutions are called Leray-Hopf solutions. When
the dimensional space is R2 the Leray-Hopf solutions are unique and regular, see the works
[Lio69], [LP59], [LS69], [Ser63], [Tem01]. However, for N = 3 the uniqueness and regularity
of Leray-Hopf solutions are still important open problems.

On the other hand, although the energy estimate for solutions is fundamental to prove
that there is a global weak solution, meanwhile, if we discuss the existence of a unique local

8



strong solution, the semigroup method introduced in [FK64], [KF62] is more powerful that the
energy estimate, so each method has advantages and disadvantages. In fact, when N = 2,
the energy estimate is strong sufficient to prove the global existence of smooth solutions,
however, when N = 3 the energy method has been not capable to provide such a result. If
N = 3, it is possible to estimate the size of possible singular set of Leray-Hopf solutions,
using the energy estimate. The reader interested in this topics can review [CKN82], [Sch78]
and [Lio96] for more details.

1.2 Some aspects of the controllability in PDE’s

In general aspects, the control problem consists in given two states of the system determine
whether is possible to drive the establish system from the first state to the given second state
by means of an applied control to the system.
We consider an abstract linear dynamic system

∂y

∂t
+A(y) = Bh,

y(·, 0) = y0 ∈ H,
(1.15)

where y is the variable state in the state space H. The dynamic of the system depends of
the parameter h, called control function, thanks to which we can act on the evolution of the
state. The question that we ask is: is it possible for a given time T > 0 and two states of
the system y0, y1 to find a control h such that the solution y of (1.15) starting y(0) = y0

satisfies y(T ) = y1?. The properties of controllability for the system (1.15) can be different
depending on the nature of the problem. In general terms we can distinguish the control in
ordinary differential equations (or finite-dimensional controls), the control in partial differen-
tial equations (or infinite-dimensional controls), the control in linear and nonlinear equations.
In this section we briefly describe some classical problems of the controllability for infinite-
dimensional systems modeled by partial differential equations.
We assume here that H is a Hilbert space, A is an operator with domain D(A) ⊂ H. By Y
we denote the control space and B ∈ L(Y ,H).

There are many physical problems associated to the abstract framework (1.15), in partic-
ular the oscillate system (wave equation) and dissipative system (heat equation), for which
we recall some results below.
In the following, we assume that the Cauchy problem associated to (1.15) is well-posed (with-
out considering the control problem), that means, assume that the operator A generates on
H a strongly continuous semigroup denoted by S(t) = etA, with S ∈ C0(R+;L(H)) (see for
instance [Paz12]). In contrast to the case of linear finite-dimensional control systems, see the
book [Son13], in the infinite-dimensional case many types of controllability are possible. We
define here three types of controllability.

Definition 1.1 Let T > 0. The control system (1.15) is exactly controllable in time T if,
for every y0 ∈ H and for every y1 ∈ H, there exists h ∈ L2(0, T ;Y) such that the solution y
of the Cauchy problem (1.15) satisfies y(T ) = y1.
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Definition 1.2 Let T > 0. The control system (1.15) is null controllable in time T if, for
every y0 ∈ H and for every ỹ0 ∈ H, there exists h ∈ L2(0, T ;Y) such that the solution of the
Cauchy problem (1.15) satisfies y(T ) = S(T )ỹ0.

Let us point out that, by linearity, we get an equivalent definition of null controllability
in time T if, in the previous definition one assumes that ỹ0 = 0. This explains the usual
terminology null controllability.

Definition 1.3 Let T > 0. The control system (1.15) is approximately controllable in time
T if, for every y0 ∈ H, for every y1 ∈ H, and for every ε > 0, there exists h ∈ L2(0, T ;Y)
such that the solution y of the Cauchy problem (1.15) satisfies ‖y(T )− y1‖H ≤ ε.

Clearly exact controllability implies null and approximate controllability. However, when
S is a strongly continuos group of linear operator the converse is true, but in general aspects,
the converse is false (see [Cor07], section 2.3.2).

Generally the controllability of a system is difficult to prove it directly, so it is convenient
to introduce an alternative method, the principal is called observability.
Let us introduce the system 

∂w

∂t
= A∗w in (0, T ),

c(t) = B∗w(t) in (0, T ),
w(T ) = wT ∈ H,

(1.16)

where A∗,B are the adjoint operators of A and B respectively, and we assume that the
problem is well-posed backwards in time. In fact, the adjoint semigruop S∗(t) = e(T−t)A∗ is
generated by A∗ and the solution for the previous system can be written as w(t) = S∗(t)wT .
The observability problem is the following: is it possible by observing only the quantity c(t),
to know the energy of the system (1.16) at final time t = 0, that is say ‖w(0)‖2

H?.

Definition 1.4 The system (1.16) is observable in time T > 0 if there exists a constant
C > 0 such that for every wT ∈ H, the solution of (1.16) satisfies

‖eTA∗wT‖2
H = ‖w(0)‖2

H ≤ C

T∫
0

‖B∗w(t)‖2
Hdt. (1.17)

This notion of observability is useful in many concrete situations when we wish to know
the state of the system from partial measurements, this is the case for example in meteorol-
ogy, images and more generality in the domain of inverse problems.
Another interest of observability resides in its connection with the controllability. We must
make the following assumptions of retrograde uniqueness (which verifies every linear system
in this thesis): every solution of (1.16) that satisfies w(0) = 0 is identically zero.
It is known that J.-L. Lions in [Lio88] (among others authors) proved that the system (1.16)
is observable in time T if and only if the system (1.15) is controllable to zero in time T . The
proof of this result is based on a mathematical method called Hilbert Uniqueness method
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(HUM).
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Wave equation

There are many examples of wave equations in the physical sciences, characterized by os-
cillating solutions that propagate through space and time while, in lossless media, conserving
the energy. Examples include the scalar wave equation (pressure waves in a gas), Maxwell’s
equations (electromagnetism), Schrodinger’s equation (quantum mechanics), elastic vibra-
tions, and so on.
It is important to say that the wave equation is the most relevant hyperbolic partial differ-
ential equation, where the main properties of hyperbolic equations such as time-reversibility
and the lack of regularizing effects, have some important consequences in control problems
(see for instance [Pue11]).

There is a huge literature on the controllability of linear wave equations for any space
dimension. One the best results on this subject has been obtained in [BLR88] and [BLR92]
for the system:


∂2y

∂t2
−∆y = h1ω×(0,T ) in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y = y0,
∂y

∂t
= y1 in Ω× {t = 0},

(1.18)

where h represents the control function that acts on the open subset ω of Ω in time interval
(0, T ). In these papers the authors proved that, in the class of C∞ domains, the observability
inequality associated to the previous system (for the null controllability) holds if and only if
(ω, T ) satisfy the following geometric control condition (GCC) in Ω: every ray of geometric
optics that propagates in Ω and reflected on its boundary ∂Ω enters ω in time less than T .
For instance, for a square domain Ω, observability (controllability) fails if the control is sup-
ported on a set which is strictly smaller than two adjacent sides.

There are of course many other references which deal with the controllability of hyper-
bolic equations. See for instance the paper [GL] by Robert Gulliver and Walter Littman, the
books [FI96b] by A. Fursilov and O. Imanuvilov, [Lio91] by J.-L. Lions and [Kom94] by V.
Komornik, where one can find different results and useful references.

Heat equation

The heat equation governs heat diffusion, as well as other diffusive process, for instance, the
temperature distribution and evolution in a body occupying the region Ω, particle diffusion
and so on. Some aspects respect to the control problems are described below. To get an idea,
let us consider the case of the linear heat equation with Dirichlet homogeneous boundary
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conditions and distributed controls:
∂y

∂t
−∆y = h1ω×(0,T ) in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),
y(·, 0) = y0 in Ω.

(1.19)

Here, Ω ⊂ RN is a bounded domain of class C2, ω ⊂ Ω is an open set on which acts the
control h (h is a localized source of heat) and y0 is the initial state, for instante, y0 in L2(Ω).
The system (1.19) are characterized by nonreversibility , the dissipativity of the solutions,
that is, the fact that energy is lost along the trajectories, and the regularizing effect . Taking
into account the regularizing effect, it is not possible to drive the solutions of (1.19) exactly
for every final state in a suitable Sobolev space, except in the trivial case when ω = Ω, which
is not interesting. In this sense, the notion of null controllability is not relevant for parabolic
equations. Thus, the good notion of controllability is not to go from a given state to another
state in a fixed time, but to go from a given state to a given trajectory (notion equivalent to
the null controllability introduced in definition 1.2).

One can find that the controllability problems for parabolic equations has been analyzed
in several papers, among them, [LR95] where the author proved null controllability for sys-
tem (1.19) using in the spectral properties of the Laplacian operator in order to construct
a control h. Also in [FI96b] the null controllability for the system (1.19) is obtained, but
through an observability inequality for the adjoint system, where the main tools are Car-
leman inequalities. For another parabolic equations (linear and nonlinear) and its study in
controllability, the reader can see [FPZ95], [Bar00], [FCGBGP06], [Lio91] and [FI96b] for
more details.

1.3 Controllability for the Navier–Stokes equations

In this section we mention the different problems that exist in controllability for the Navier-
Stokes equations. The first idea corresponds to the global controllability results for incom-
pressible fluids modeling for this equations, which are based in the return method . Briefly,
this method goes as follows: Can find a trajectory of the nonlinear control system such that

a) It stars and ends at the equilibrium.

b) The linearized control system around this trajectory is controllable.

Thus, thanks to the implicit function theorem one can go from every state close to the equi-
librium to every other state close to the equilibrium.

Now, in order to define some aspects of the controllability for the Navier–Stokes equations,
we introduce some notation. LetN = 2 orN = 3 and let Ω be a bounded nonempty connected
open subset of RN with smooth boundary ∂Ω. Let Γ0 ⊂ ∂Ω and ω0 be an open subset of Ω
where the control acts.
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Definition 1.5 A trajectory of the Navier-Stokes control system on the time interval [0, T ]
is a map y : [0, T ]×Ω→ RN such that, for some function p : [0, T ]×Ω→ R, the pair (y, p)
satisfies the system (1.13) in [0, T ]×Ω\ω0 with divergence free condition (1.14) in [0, T ]×Ω,
and y(·, t) safisfies the boundary conditions on ∂Ω\Γ0.

The Jacques-Louis Lions problem of approximate controllability is the following:
Problem. Starting with the initial data y0 for the velocity field, we ask whether there are
trajectories of the Navier-Stokes system which, at a fixed time T , are arbitrarily close to the
given velocity field y1. In other words, for T > 0, consider y0, y1 : Ω→ RN satisfying (1.14)
and boundary conditions on ∂Ω\Γ0, the question is, does there exists a trajectory y of the
Navier-Stokes control system such that

y(·, 0) = y0 in Ω, (1.20)

and, for an appropriate topology (see [Lio91]),

y(·, T ) is close to y1 in Ω?. (1.21)

If the previous problem has a solution, we say that the system is approximately control-
lable. If we change the condition (1.21) by

y(·, T ) = y1 in Ω, (1.22)

it is possible to prove as consequence of the smoothing effect of the Navier-Stokes system
that the problem does not admit solution for arbitrary y1. Thus, we replace (1.22) by an-
other condition in order to recover a natural definition of controllability for the Navier-Stokes
system. A better definition for controllability, which was presented in [FI95] and [CF96] is
passing from a given state y0 to a given trajectory ŷ1. Then, the control problem for the
Navier-Stokes system with Stokes or Navier-slip conditions can be written as follow.

Problem. Let T > 0. Let ŷ1 be a trajectory for the Navier-Stokes system on [0, T ]. Let
y0 ∈ C∞(Ω;RN) satisfy the divergence free condition (1.14) and the boundary conditions
used. Does there exist a trajectory y of the Navier-Stokes system on [0, T ] such that

y(x, 0) = y0(x) and y(x, T ) = ŷ1(x), ∀x ∈ Ω? (1.23)

Related to this problem, one knows two types of results: local results and global results.

The local results do not rely on the return method and instead are related with observ-
ability inequalities for the heat equation. The main difficulty here is to estimate the pressure
term. The definition of local controllability along trajectories for the Navier-Stokes system
is the following:

Definition 1.6 The Navier-Stokes system is locally controllable along the trajectory ŷ1 on
[0, T ] of the Navier-Stokes control system if there exists ε > 0 such that, for every y0 ∈
C∞(Ω;RN) satisfying (1.14), boundary conditions and

‖y0 − ŷ1(·, 0)‖H1(Ω)N < ε,
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there exists a trajectory y of the Navier-Stokes system on [0, T ] satisfying (1.23).

We mention that the local controllability for the Navier-Stokes system has been studied
for many mathematicians. The main works are:

a) The papers [FI94] and [FI96a] where the authors treated the case N = 2 and linear
Navier-slip boundary conditions.

b) In [Fur95] the author treated the case where Γ0 = ∂Ω, N = 3 and Dirichlet boundary
conditions.

c) In [Ima01] the author proved the case of the homogeneous Dirichlet boundary condi-
tions.

d) In [FCGIP04] the authors weakened some regularity assumptions.

e) In [Gue06] the author proved the case of the Navier-slip boundary conditions.

f) The work presented in [CG13], where the authors proved the local null controllability
for the Navier-Stokes system with one vanishing component in the control.

The global controllability results are usually much more complicated than getting local
controllability results. We find in [Cor96] a proof based in the return method. Let us recall
that it consists of looking for a trajectory of the Navier-Stokes system y such that

y(·, 0) = y(·, T ) = 0 in Ω,

and such that the linearized system around the trajectory y has a controllability in a good
sense.

Finally, in [FI94] and [FI96a] the authors proved that the lineriazed system around the
trajectory y with Navier-slip boundary conditions is controllable. On the other hand, in
[Lio71] is proved the approximate controllability, meanwhile, in [AS05], [Shi06] the authors
have obtained global approximate controllability results for the Navier-Stokes equations (also
for the Euler equations) when the controls are on some low modes and Ω is a torus.

There are other papers that deal with the interaction fluid with other materials. For
instance:

a) The papers [OP99], [Luk72] and [LZ96] on the controllability of an incompressible fluid
interacting with an elastic structure.

b) In [DFC05] the authors treated with the controllability of one-dimensional nonlinear
system which models the interactions of a fluid and a particle.

c) The controllability of a model linearized and simplified 1-D model for fluidstructure
interaction is studied in [ZZ03].
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1.4 Inverse problems in PDE’s

The origin of the term inverse problem (around 1960s) is simple and mirrors what is called
the forward (or direct) problem. In simple terms, the direct problem is the situation: given
the questions, find the answer, whereas the inverse problem is given the answer, find the
question. Thus, an inverse problem consists in to determine a cause from its effect. However,
in some cases, there is no hope of ever being able to solve the direct problem in full gen-
erality. Many applications of inverse problems can be found in the physical and mechanics
sciences: biomedical engineering (ultrasound, X-ray), acoustics, radioastronomy, imaging,
meteorology, oceanography, oil engineering, seismology, so on. It is probably fair to say that
the majority of real world problems are inverse problems.

The French mathematician Jacques Hadamard introduced in 1923 the term well- posed for
a mathematical problem where: the solution always exists (existence), the solution is unique
(uniqueness) and, small changes in the initial conditions leads small changes in the solution
(the solution depends continuously on the data). The opposite case of a well posed problem
is called ill-posed , this means that, a solution may not exist, there may be more than one
solution, small changes in the initial conditions leads to big changes in the solution. The
inverse problems tend to be ill-posed.
If the data from measurements can in theory create a space of either finite or infinite dimen-
sions, in practice the data are always finite and discrete. When the number of parameters
in a model is smaller than the number of data points from the measurements, the problem
is called overdetermined . In that case, it may be possible to add a criterion that diminishes
or eliminates the effect of aberrant data. On the other hand, if the problem consists in de-
termining continuous parameters that are thus sampled from a very large number of values,
and if the number of results from the experiments is insufficient, the problem is called under-
determined . It is then necessary to use a priori information to achieve a reduced number of
possible solutions, or, in the best case, only one. Since for an underdetermined problem there
are often several possible solutions, it is necessary to specify the confidence level that one
can give to each solution. For these problems, the data can also be affected by a likelihood
coefficient (or probabilistically weighted), if this is the case, a Bayesian approach can be
used for the problem. The following scheme allows to clarify some previous ideas even further.

Definition 1.7 Let (V1, ‖ ·‖V1) and (V2, ‖ ·‖V2) be two normed vector spaces and F : V1 → V2

be a given mapping. The direct problem is to determine y = F (x), when x ∈ V1 is given.
The inverse problem is to determine such x ∈ V1 that y = F (x) when an arbitrary y ∈ V2 is
given. The mapping F is called the direct theory.

The previous abstract inverse problem is well-posed whether there exists a solution, the
solution has to be unique and the inverse mapping F−1 : V2 → V1 (if there exists) has to be
continuous. More precisely:

- Existence. For every y ∈ V2 there has to be x ∈ V1 such that y = F (x). In other words,

16



the direct problem needs to be a surjection. Thus, arise the problem to characterize those
y ∈ V2 that correspond to unknown x ∈ V1.

- Uniqueness. If x1, x2 ∈ V1 are two solutions satisfying F (x1) = F (x2) in V2, then x1 = x2

has to hold. That means, the direct theory needs to be an injection. Therefore, arise the
question whether is there enough data to determine the solution uniquely?. This problem is
called identificability .

- Continuous dependency on the data. When F is injective and surjective, then the inverse
mapping F−1 : V2 → V1 has to be continuous. Now the problem is, how small changes in
the data disturb the corresponding mathematical solutions?. This is called a stability problem.

However, there are two additional problems: how x is obtained from the given y in F (V1),
and of course, an approximative method for recovering the unknown available data. These
problems correspond to the theoretical and numerical reconstruction.
In finite dimensional linear inverse problems the direct mappins F can be represented with
the help of a matrix M . Here, the inverse problem is well-posed if
- For every y ∈ V2 the equation y = M(x) has a solution x ∈ V1.
- The equation Mx = 0 has only the trivial solution.
On the other hand, the inverse problem is ill-posed if at least one of the following claims
holds:
- For some y ∈ V2 the equation y = Mx does not have a solution x ∈ V1.
- There exists x ∈ V1 that satisfies Mx = 0 and x 6= 0.
If the data contains too much disturbances, the solution of a well-posed problem can be far
from the true solution. A well-posed problem which is highly ”ill-conditioned” can resemble
an ill-posed problem where the solution does not depend continuously on the data.
Finally, it is clear that in infinite dimensional this questions are more complicated than in
finite dimensional, but many real phenomenon are describe in this context.

To start out with a concrete description on an inverse problem, we comment the classical
inverse problem of gravimetry. The simplest equation that represents the strength of a
gravitational field u in R3 is given by

−∆u = f, (1.24)

where f is the mass distribution that generates the measurements of the gravitational force
∇u, and which is considered outside a bounded domain Ω as zero. Here, Ω is a ball or a
body close to a ball (earth). The direct problem in gravimetry is to find u given f . This is
a well-posed problem in the Hadamard sense: its solution exists for any integrable function
f , and even for any distribution that is zero outside Ω; it is unique and stable with respect
to standard functional spaces. The solution is given by

u(x) =

∫
Ω

k(x− s)f(s)ds,
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where k is a specific kernel. On the other hand, the inverse problem of gravimetry is to
find f given ∇u on Γ, where Γ is a part of the boundary ∂Ω (gravitational force on the
boundary). Physically, this inverse problem is fundamental in recovering the density of the
earth from boundary measurements of the gravitational field. Another interesting application
is in gravitational navigation: one can measure the gravitational field (from satellites) with
quite high precision, then possibly find the function f that produces this field, and use
this result to navigate aircrafts. However, there is a strong non uniqueness of f for a given
gravitational potential u outside Ω, and therefore the uniqueness of the inverse source problem
is restricted to a special type of f , for instance harmonic functions, functions dependent on
one variable, characteristic functions with unknown domains inside Ω. Thus, the inverse
problem of gravimetry is ill-posed, which creates mathematical and numerical difficulties
(convergence of iterative algorithms is very slow and therefore numerical errors accumulate
do not allow a good resolution). The Victor Isakov books [Isa06] and [Isa90] contains partial
results for the inverse problem presented above and other classical inverse problems. The
work of Addellatif and Doung [EBD98] deal with the problem of identification of source from
boundary measurements for the system (1.24). Furthermore, we highlight Theorem 4.1.6,
presented in [Isa06], which will have connection with our main result in Chapter 4. Theorem
4.1.6 is referent to the following linear inverse source problem: Let Ω ⊂ RN be a bounded
Lipschitz domain. Let us consider the Dirichlet problem{

Au = f in Ω,
u = g0 on ∂Ω,

(1.25)

where A = ∂j(a∂j)+c, for every j = 1, . . . , N . Let L be the differential operator ∂j(αj∂j)+β.

Theorem 1.8 Let us assume that one of the three conditions is satisfied:

A = L,
aαj ≥ ξjj,

−(∂k(αk∂ka) + ∂k(a∂kαj) + 2cαj + 2aβ)ξ2
j + ∂jαk∂kaξjξk ≥ ε1ξ

2
1 + · · ·+ εNξ

2
N ,

(1.26)

∂k(αk∂kc+ α∂kβ) + 2cβ ≥ 0; (1.27)

where ξjj, ξj are nonnegative numbers with positive sum;

f = αf1 + f2, where
∂α

∂n
≥ 0 on Ω, (1.28)

and α is given. If f ∈ L2(Ω) and
Lf = 0 in Ω (1.29)

in the case (1.26), (1.27), then f entering the Dirichlet problem is uniquely determined by

the addtional Neumann data a
∂u

∂n
u = g1 on ∂Ω.

In case (1.28), f in uniquely identified by the Neumann data if the coefficients of A do not
depend on xN and c ≥ 0.

There is a huge literature on inverse problems, the reader can see the Victor Isakov
books [Isa06], [Isa90], and the book [ABT11] by Aster, Richard C and Borchers, Brian and
Thurber, Clifford Hal. See also, the thesis about recovery of a coefficient in viscoelasticity
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models [Buh10] by Maya de Buhan, the thesis referent to the Stokes system and its appli-
cation in respiratory systems [Egl12] by Anne Eggloffe, and the thesis [Bal11] where Andrea
Ballerini treats the stability and reconstruction for an immersed body in a fluid. The lec-
tures [Kav02],[Bal12] by O., Kavian and Guillaume Bal, respectively. Finally, some papers
in this context are: [Kli92] by Victor Isakov, the works [SU87] by Silvester and Uhlman,
[SU13] by Stefanov and Ulhmann, [Uhl99] by Ulhmann, and [KV84] by Robert Kohn and
Michael Vogelius. See also, the works of Masahiro Yamamoto and Oleg Yu Imanuvilov [IY01],
[IY98], the work [EEK04] by Egger and Klibanov, [Pue11] by Jean Pierre Puel, [DO06] by
A. Doudova and A. Osses, [MOR08] by A. Mercado, A. Osses, and L. Rosier, [BY06] by M.
Bellassoued and M. Yamamoto.

1.5 Inverse source problems for the Navier-Stokes equa-

tions

In presence of an external force F = F (x, t) acting on the model presented in (1.13), it
follows that the Navier-Stokes equations for homogeneous incompressible fluids (with suitable
boundary conditions and initial data) are:

∂y

∂t
− ν∆y + y(∇ · y) +∇p = F in Ω× (0, T ),

∇ · y = 0 in Ω× (0, T ),
+BC on ∂Ω× (0, T ),
y(·, 0) = y0 in Ω.

(1.30)

To the system (1.30) the inverse source problems are divided in two types: the linear case
and the nonlinear case. In the linear case, the system (1.30) is called Stokes system. Thus,
the Stokes system with Dirichlet homogeneous boundary conditions is given by:

∂y

∂t
− ν∆y +∇p = F in Ω× (0, T ),

∇ · y = 0 in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(·, 0) = y0 in Ω,

(1.31)

where Ω ⊂ RN is an open boundary set and N = 2, 3. The pioneers in to deal with inverse
source problems for the system (1.31) were Imanuvilov and Yamamoto in [IY00]. In this
paper the authors proved the Lipschitz stability when the force F only depends on space. In
fact, the corresponding inequality is:

‖F‖L2(Ω)N ≤ C
(
‖y(·, θ)‖H2(Ω)N +‖∇p(·, θ)‖L2(Ω)N

+‖p‖H1(θ−δ,θ+δ),L2(ω)) + ‖y‖H1(θ−δ,θ+δ),L2(ω)N )

)
,

where 0 < θ < T , δ is small positive number and ω is an open subset in Ω. The techniques
used by them are Carleman inequalities and the Bukhgeim-Klibanov method, which is useful
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in order to solve inverse problems (see [Kli13], [FI96b]). This problem is overdetermined
because p(·, θ) is not necessary for the well-posedness in an initial (or boundary) value problem
for the Stokes system (1.31). Moreover, the uniqueness is an open problem whether we
choose θ = 0, see for instance[Isa90] and [FK64]. The work of Choulli, Imanuvilov, Puel and
Yamamoto [CIPY13] is based on Carleman inequalities in order to prove other inequality
(see [IY05], [IPY09]). In [CIPY13] the authors have established the Lipschitz stability for
the linearized system associated to (1.30), from measurements only of the velocity. In this
case, the pressure term disappears with the rotational operator and the source is F (x, t) =
R(x, t)f(x), with R(x, t) vector field known and f unknown. More precisely, they found

‖f‖L2(Ω) ≤ C
(
‖y‖H2(0,T ;H1(ω)N ) + ‖∇ × y(·, θ)‖H2(Ω)N + ‖y(·, θ)‖H1(Ω)N

)
,

with 0 < θ < T and different hypothesis over R(x, t) and ω ⊂ Ω. From a abstract view, the
system (1.31) with T = +∞ was studied in [GT11] by G. Garćıa and T. Takahashi to obtain
a logarithmical stability. The tools in their paper are Carleman estimates and other types
of inequalities that arise from null controllability problems for parabolic equations. Roughly
speaking, for a source F (x, t) = σ(t)f(x) where f is vector valued, it follows

‖f‖L2(Ω)N ≤ C

(
‖∂ty‖qL2(0,τ ;L2(ω)N )

log ‖∂ty‖L2(0,τ ;L2(ω)N )

)s/q

, (1.32)

where q ∈ (1, 1/(1− ε)), ε is a small positive number and 0 < τ < T .

There are other works making reference to inverse problems for similar systems. For
instance, the work [Mar15] by Nuno Martins, where the author uses the Brinkman-Stokes
system in order to prove the identification for the external source and a divergence source,
from boundary data of the stress tensor. A brief description is the following. To the system

(∆− λ)yλ −∇pλ = f in Ω,
∇ · yλ = g in Ω, λ ≥ 0
yλ = 0 on ∂Ω,

(1.33)

where the constant λ plays the role of the medium’s resistance to the flow, the inverse prob-
lem is to recover the pair of a body force and a divergence source, (f, g), from measurements
data over the stress tensor σ(yλ, pλ) on the boundary, with (yλ, pλ) satisfying (1.33). Then,
they define an operator Λλ : L2(Ω) → H−1/2(∂Ω) by Λλ(f, g) := σ(yλ, pλ)n|∂Ω, and through
Functional and Fourier analysis the identification from several measurements is achieved.

1.6 Contribution of the thesis

In this thesis we deal with two problems, the first one, the local null controllability for the
Navier–Stokes system with nonlinear Navier-slip boundary conditions. It is very important
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to say that our result is obtained in the case where the control has one null scalar component.
More precisely, the controllability system is the following:

yt −∇ · (Dy) + (y,∇)y +∇p = vχω in Ω× (0, T ),
∇ · y = 0 in Ω× (0, T ),
y · n = 0, (σ(y, p) · n)tg + f(y)tg = 0 on ∂Ω× (0, T ),
y(·, 0) = y0(·) in Ω,

(1.34)

where f : RN → RN represents the nonlinearity on the boundary condition, N = 2 or N = 3,
and v is the control acting on a subdomain ω× (0, T ) ⊂ Ω× (0, T ) such that vj = 0, for some
j = 1, . . . , N .

The strategy is divided in five steps. The first one, a new regularity result for the as-
sociated linear system, i.e., the linear system is the Stokes system with linear Navier–slip
conditions. Thus, the solution (y, p) belongs to L2(0, T ;H4(Ω)N ∩W ) ∩ H2(0, T ;L2(Ω)N ∩
W )×L2(0, T ;H3(Ω)), with W = {u ∈ H1(Ω)N : ∇·y = 0 in Ω, y·n = 0 on ∂Ω}. The second
one, a new Carleman estimate in order to prove the null controllability of the linear system,
where the pressure term is considered in the estimates. The third, the null controllability for
the linear system with control v in L2(0, T ;H2(ω)N)∩H1(0, T ;L2(ω)N), and of course vj = 0,
for some j = 1, . . . , N . The fourth step is to apply Katutani’s fixed point theorem in order
to prove the null controllability for the Stokes system with nonlinear boundary conditions.
Finally, the Implicit mapping theorem allows us to complete the proof. This allow to obtain
the local null controllability of (2.1) with internal controls having one vanishing component.

The second part of this thesis treat inverse source problems for the Stokes system with
homogeneous Dirichlet boundary conditions from velocity measurements with one missing
component. Here, it is important to say that at the moment, the inverse source problem
for the system (1.30) with Dirichlet or linear Navier-slip boundary conditions remains open,
even if the source only depends on space.
Our main results have two types of sources: F (x, t) = σ(t)f(x) and F (x) = R(x)f(x) for
(x, t) in Ω× (0, T ), where σ(t), R(x) are known, and in both cases f(x) is unknown, however,
in the first case f(x) is vector valued, meanwhile f(x) is scalar in the second case. Then, the
inverse source problems obtained for the system (1.31) are: Reconstruction and uniqueness
for F (x, t) = σ(t)f(x) in the space

H := {f ∈ L2(Ω)N : ∇ · f = 0 in Ω, f = 0 on ∂Ω},

from local measurements of N − 1 scalar components of velocity, or in other words, the
observed data have one missing component of velocity.
Roughly speaking, the reconstruction formula is:

PHfk = a−1
k (C1k + C2k),

where PH represents the orthogonal projector from L2(Ω)N onto H and

ak := 1− νλk
σ(T )

∫ T

0

e−νλk(T−s)σ(s)ds 6= 0,
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for k ≥ 0, λk are eigenvalues of the Stokes operator (with homogeneous Dirichlet bound-
ary conditions) and the functions C1k, C2k only depend on the local observations of N − 1
components of the solution of (1.31). In consequence, the uniqueness is achieved for f in
H. The proof is based in the works of G. C. Garćıa, A. Osses and N.Tapia [GOT13] for
a reconstruction formula in parabolic equations, and the work [CG09] by J-M. Coron and
S. Guerrero about null controllability of the Stokes system with N − 1 scalar controls. We
also establish numerical experiments in order to see the feasibility our results. Finally we
comments some open problems in this context.
Lipschitz stability for F (x) = R(x)f(x) when local and boundary measurements are avail-
able, with some additional assumptions respect to R(x). The corresponding inequality is
given by:

‖f‖L2(Ω) ≤ C

(
‖∆2yj(·, θ)esα(·,θ)‖L2(Ω) +

2∑
k=0

‖(ξ̂)1/2esα̂∂kt ∆yj‖L2(0,T ;H5/4(∂Ω))

+
2∑

k=0

‖ξ3/2esα∂kt ∆yj‖L2(ω×(0,T ))

)
,

(1.35)

where 0 < θ < T , ω ⊂ Ω an open subset, α and α̂ are Carleman weights, and s > 0 is
sufficiently large. The proof of (1.35) involves the Bukhgeim–Klibanov method based in
Carleman inequalities to prove inverse problems (see [Kli81]). The additional tools are: one
Carleman estimates obtained in [FCGBGP06] for parabolic equations with Fourier boundary
conditions and some results in the theory of degenerate elliptic operators. A similar result
can be developed using degenerate Sobolev spaces (see Appendix A).
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Chapter 2

Controllability for the Navier-Stokes
with Navier-slip boundary conditions

2.1 Introduction

Let Ω be a nonempty bounded connected open subset of RN (N = 2 or N = 3) of class C∞.
Let T > 0 and let ω ⊂ Ω be a (small) nonempty open subset which is the control domain.
Here, we will use the notation Q := Ω × (0, T ), Σ := ∂Ω × (0, T ) and by n(x) the outward
unit normal vector to Ω at the point x ∈ ∂Ω.
Let us consider the controlled Navier-Stokes system with nonlinear Navier slip boundary
conditions. Given a nonlinear regular function f : RN → RN and an initial state y0, we
consider the following system:

yt −∇ · (Dy) + (y,∇)y +∇p = vχω in Q,
∇ · y = 0 in Q,
y · n = 0, (σ(y, p) · n)tg + f(y)tg = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(2.1)

where v = v(x, t) stands for the control which acts in a arbitrary fixed domain ω × (0, T )
and χω is a smooth positive function such that χω = 1 in ω′, where ω′ b ω, with ω′ an open
set. Respect to the boundary conditions, we mention that in 1823, C.L. Navier (see [Nav23])
established a slip-with-friction boundary condition and claimed that the component of the
fluid velocity tangential to the surface should be proportional to the rate of strain at the
surface. The velocity’s component normal to the surface is naturally zero as mass is not able
to penetrate an impermeable solid surface [Nav23]. This can be expressed by

y · n = 0 and (σ(y, p) · n)tg + kytg = 0 on Σ,

where σ(y, p) := −pId + Dy is the stress tensor, D is the symmetrized gradient of y, p is
the pressure, Id is the identity matrix, (σ(y, p) · n)tg denotes the tangential component of
σ(y, p) · n and ytg is the tangential velocity along the solid surface and k is a scalar friction
function that measures the local viscous coupling between fluid and solid.
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Physically a nonzero slip length arises from the unequal wall and fluid densities, the weak
wall-fluid interaction, and the high temperature. These behavior types had been recently
demonstrated and showed that the phenomenon of slip occurs with dependence on various
factors, such as in aerodynamics processes when the high pressure is involved, in weather
forecast where trees, buildings, water waves have to be taken into account, in turbulence,
when k depends on pressure, etc. In consequence, the analysis is complicated as well as
numerical solutions of the model and an alternative is then to reduce the no-slip condition
on rough boundaries to ad hoc boundary conditions, the so-called wall laws, on a smooth
domain.
Let us point out that our boundary conditions corresponds to a law of the wall that appear
in turbulent flows, specifically when k may not depend on |y| linearly. We invite to interested
reader to see [Bre12],[LBS07] for a complete discussion on this subject.

In the context of controllability, the papers by Coron [Cor96] and Imanuvilov [Ima97] show
results of the approximate controllability and local exact controllability for the Navier-Stokes
system with Navier-slip boundary conditions in two dimensions, with some restrictions re-
spectively. The system (2.1) has been studied by Guerrero [Gue06], in this paper the author
proved the local null controllability to the trajectories of (2.1) in dimension N using Carleman
estimates for the associated linear system and fixed point arguments. On the other hand,
recent papers by Coron and Guerrero [CG09], Carreño and Guerrero [CG13] are evidence of
the null controllability and local null controllability of the Navier-Stokes system with N − 1
scalar controls, even thought they use homogeneous Dirichlet boundary conditions. Then,
the main objective of this Chapter is to obtain the local null controllability of system (2.1)
by means of N − 1 scalar controls, see Theorem 2.1.

Let us now introduce several spaces which are usual in the context of problems modeling
incompressible fluids:

V := {u ∈ H1
0 (Ω)N : ∇ · u = 0 in Ω},

H := {u ∈ L2(Ω)N : ∇ · u = 0, in Ω u · n = 0 on ∂Ω}
and

W = {u ∈ H1(Ω)N : ∇ · u = 0 in Ω, u · n = 0 on ∂Ω}.
Our main result is given in the following theorem.

Theorem 2.1 Let us assume that i ∈ {1 , . . . ,N } and f ∈ C4(RN ;RN) with f(0) = 0.
Then, for every T > 0 and ω ⊂ Ω, there exists δ > 0 such that, for every y0 ∈ H3(Ω)N ∩W
satisfying ‖y0‖H3(Ω)N∩W ≤ δ and the compatibility condition

(Dy0 · n)tg + (f(y0))tg = 0 on ∂Ω, (2.2)

we can find a control

v ∈ L2(0, T ;H2(ω)N) ∩H1(0, T ;L2(ω)N),

with vi ≡ 0 and an associated solution (y, p) to (2.1) verifying y(·, T ) = 0 in Ω.
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To prove Theorem 2.1, we first deduce a null controllability result for a linearized system
around zero associated to (2.1):

yt −∇ · (Dy) +∇p = h+ vχω in Q,
∇ · y = 0 in Q,
y · n = 0, (σ(y, p) · n)tg + (A(x, t)y)tg = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(2.3)

where A is a N ×N matrix-valued function in a suitable space and h decreases exponentially
to zero in T . Finally, we apply Kakutani’s fixed point theorem and an inverse mapping
theorem to conclude the local null controllability for the nonlinear system (2.1).

On the other hand, we highlight that some ideas as appear in [CG13] and [CG09] concern-
ing to null controllability for the linear system (2.3) are not able to be considered. Indeed,
this relevant detail arises from the different boundary conditions that we present here.
The Chapter is organized as follows. In Section 2.2, we present a previous regularity result
proved in [Gue06] and other that we prove here for systems as (2.3). In section 2.4 we estab-
lish a Carleman inequality needed to deal with the controllability problems. In section 2.4
we prove the null controllability of the linear system (2.3). Finally, in Section 2.5 we give the
proof of Theorem 2.1 using fixed point arguments.

Before starting with Section 2, we consider several Hilbert spaces for ε > 0 small enough :

P 0
ε := H1/2+ε(0, T ;H1+ε(∂Ω)N×N), P 1

ε := H5/4+ε(0, T ;L2(∂Ω)N×N),

P 2 := L2(0, T ;H5/2(∂Ω)N×N),

Zε := H5/4+ε(0, T ;H1(Ω)N ∩W ) ∩ L2(0, T ;H3(Ω)N ∩W ) (2.4)

and

Y1 := L2(0, T ;H2(Ω)N) ∩H1(0, T ;L2(Ω)N), Y2 := L2(0, T ;H4(Ω)N) ∩H2(0, T ;L2(Ω)N).

2.2 Preliminary results

In order to prove the main theorem of this Chapter, we introduce some preliminary results
which will be used later on. More precisely, we present regularity results concerning the
Stokes system with linear Navier-slip boundary conditions.

The proof of the following result can be found in [Gue06].

Lemma 2.2 Let A ∈ P 0
ε , u0 ∈ H, f0 ∈ L2(0, T ;W ′), f2 ∈ L2(0, T ;H−1/2(∂Ω)N) and let u

be the weak solution of the system
ut −∇ · (Du) +∇θ = f0 in Q,
∇ · u = 0 in Q,
u · n = 0, (σ(u, θ) · n)tg + (A(x, t)u)tg = f2 on Σ,
u(·, 0) = u0(·) in Ω,

(2.5)
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namely, the function u satisfying

∫
Ω

ut(t) · vdx+
1

2

∫
Ω

Du(t) : Dvdx+

∫
∂Ω

Au(t) · vdσ

=

∫
Ω

f0(t) · vdx+

∫
∂Ω

f2(t) · vdσ a.e t ∈ (0, T ), ∀v ∈ W,

u(·, 0) = u0(·) in Ω.

Then, if we further assume u0 ∈ W and

f0 ∈ L2(Q)N , f2 ∈ L2(0, T ;H1/2(∂Ω)N), f2 ∈ H1/4+ε(0, T ;H−ε(∂Ω)N),

u is actually, together with a pressure θ, the strong solution of (2.5), i.e., (u, θ) ∈ Y1 ×
L2(0, T ;H1(Ω)). Furthermore, there exists a positive constant C such that

‖u‖Y1 + ‖θ‖L2(0,T ;H1(Ω)) ≤ Ce
CT‖A‖2

P0
ε (1 + ‖A‖2

P 0
ε
)
(
‖f0‖L2(Q)N

+‖f2‖L2(0,T ;H1/2(∂Ω)N ) + ‖f2‖H1/4+ε(0,T ;H−ε(∂Ω)N ) + ‖u0‖H1(Ω)N
)
.

(2.6)

Remark 2.1 The author in [Gue06] proved Lemma 2.2 whenever

A ∈ H1−`(0, T ;W ν1,ν1+1(∂Ω)N×N),

where 0 < ` < 1/2 is arbitrarily close to 1/2 and ν1 > 1 is arbitrarily close to 1. Observe
that this hypothesis is satisfied if A ∈ P 0

ε .

Using the above Lemma, we prove now a regularity result for the solution of (2.5). To
this end, we will impose the following compatibility condition :

(Du0 · n)tg + (A(·, 0)u0)tg = f2(·, 0) on ∂Ω. (2.7)

Theorem 2.3 Let A ∈ P 1
ε ∩ P 2, u0 ∈ H3(Ω)N ∩ W satisfying (2.7), f0 ∈ Y1, f2 ∈

L2(0, T ;H5/2(∂Ω)N) ∩H1(0, T ;H1/2(∂Ω)N), and let u be the strong solution of system
ut −∇ · (Du) +∇θ = f0 in Q,
∇ · u = 0 in Q,
u · n = 0, (σ(u, θ) · n)tg + (A(x, t)u · n)tg = f2 on Σ,
u(·, 0) = u0(·) in Ω.

(2.8)

Then, (u, θ) ∈ Y2 × L2(0, T ;H3(Ω)) and there exists a positive constant C such that

‖u‖Y2 + ‖θ‖L2(0,T ;H3(Ω))

≤ C(A)
(
‖f0‖Y1 + ‖f2‖L2(0,T ;H5/2(∂Ω)N ) + ‖f2‖H1(0,T ;H1/2(∂Ω)N ) + ‖u0‖H3(Ω)N

)
,

(2.9)

where

C(A) = Ce
CT‖A‖2

P0
ε

(
1 + ‖A‖2

P 0
ε

)[
1 + ‖A‖3

P 1
ε

+ ‖A‖3
P 2

]
. (2.10)
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Proof of Theorem 2.3. We consider (2.8) like a parametrized stationary system, that is
to say: 

−∇ · (Du) +∇θ = f0 − ut in Ω,
∇ · u = 0 in Ω,
u · n = 0, (σ(u, θ) · n)tg + (A(x, t)u · n)tg = f2 on ∂Ω,

(2.11)

for almost every t ∈ (0, T ).
The rest of the proof is divided in two steps.
Step 1. The goal will be to prove that the weak solution (u, θ) of the stationary system

−∇ · (Du) +∇θ = g0 in Ω,
∇ · u = g1 in Ω,
u · n = 0, (σ(u, θ) · n)tg = g2 on ∂Ω,

(2.12)

actually belongs toH3(Ω)N×H2(Ω), whenever g0 ∈ H1(Ω)N , g1 ∈ H2(Ω) and g2 ∈ H3/2(∂Ω)N .

In accordance with estimate (2.6) for the stationary case and for A = 0, we obtain that
the weak solution of (2.12) satisfies

‖u‖H2(Ω)N + ‖θ‖H1(Ω) ≤ C
(
‖g0‖L2(Ω)N + ‖g1‖H1(Ω) + ‖g2‖H1/2(∂Ω)N

)
, (2.13)

for a positive constant C.
The interior regularity readily follows from the corresponding result with homogeneous
Dirichlet boundary conditions, which can be found in [Tem01], for instance. Then, for every
Ω′ ⊂⊂ Ω, we have u ∈ H3(Ω′)N , θ ∈ H2(Ω′) and

‖u‖H3(Ω′)N + ‖θ‖H2(Ω′) ≤ C
(
‖g0‖H1(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H1/2(∂Ω)N

)
, (2.14)

for some positive constant C(Ω′,Ω).

We consider x0 ∈ ∂Ω and U0 a simply connected neighborhood of x0. Then, it suffices to
prove that u ∈ H3(Ω ∩ Ũ)N and θ ∈ H2(Ω ∩ Ũ), for every Ũ ⊂⊂ U0.
To this end, let ψ be a W 3,∞ diffeomorphism which sends the set

C0 := {(ξ′, ξN) ∈ RN : |ξi| < α0 i = 1, · · · , N − 1, |ξN | < β0}

onto U0 and which verifies

ψ(C+
0 ) = Ω ∩ U0, ψ(∆α0) = ∂Ω ∩ U0,

where we have denoted C+
0 = C0 ∩RN

+ and ∆α0 = ∂RN
+ ∩C0. Let us now introduce a cut-off

function ζ ∈ C2(U0) such that

ζ ≡ 1 in Ũ and supp ζ ⊂ U1 ⊂⊂ U0, (2.15)

where U1 is a regular open set. Then, let us set z = ζu, h = ζθ. They verify:
−∇ · (Dz) +∇h = g∗0 in Ω ∩ U0,
∇ · z = g∗1 in Ω ∩ U0,
z · n = 0, (σ(z, h) · n)tg = g∗2 on ∂Ω ∩ U0,
z = 0 on Ω ∩ ∂U0,

(2.16)
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with

g∗0 =ζg0 − 2∇ζ · ∇u−∇ζ · ∇tu−∆ζu−∇∇ζ · u+ θ∇ζ − g1∇ζ ∈ H1(Ω ∩ U0)N ,

g∗1 =ζg1 +∇ζ · u ∈ H2(Ω ∩ U0) and g∗2 = ζg2 +
∂ζ

∂n
u ∈ H3/2(∂Ω ∩ U0)N .

(2.17)

Let us now perform the change of variable x = ψ(ξ). If we define z̃ = z ◦ ψ, h̃ = h ◦ ψ and
ñ = n ◦ ψ, then

∂

∂xi

zs =
N∑
k=1

∂z̃s
∂ξk

∂ξk
∂xi

= ∇z̃s · ∇iψ
−1, ∀s = 1, . . . , N,

where we have denoted ∇iψ
−1 the ith-column of ∇ψ−1. Observe that

∂

∂xl

( ∂

∂xi

zs

)
=

N∑
j,k=1

( ∂2z̃s
∂ξk∂ξj

∂ξj
∂xl

∂ξk
∂xi

)
+

N∑
k=1

∂z̃s
∂ξk

∂2ξk
∂xl∂xi

.

Therefore

∆zs =
N∑

i,j,k=1

( ∂2z̃s
∂ξk∂ξj

∂ξj
∂xi

∂ξk
∂xi

)
+

N∑
k,i=1

∂z̃s
∂ξk

∂2ξk
∂x2

i

= Hess(z̃s) :
( N∑

i=1

∂ξj
∂xi

∂ξk
∂xi

)
j,k

+
N∑
k=1

∂z̃s
∂ξk

∆ξk

= Hess(z̃s) : ∇ψ−1∇tψ−1 +∇z̃s ·∆ψ−1,

where Hess(z̃s) represents the Hessian matrix on z̃s and ∆ψ−1 := ∆ξ := (∆ξ1, . . . ,∆ξN).
Moreover,

div z =
N∑

s,j=1

∂z̃s
∂ξj

∂ξj
∂xs

= ∇z̃ : ∇tψ−1 and
∂

∂xs
h =

N∑
j=1

∂h̃

∂ξj

∂ξj
∂xs

= ∇h̃ · ∇sψ
−1.

Then, taking into account that for every i = 1, . . . , N we have

(∇ ·Dz)i = ∆zi + ∂i div z,

we find from (2.16) that z̃i satisfies the following system for i = 1, . . . , N :
−Hess(z̃i) : ∇ψ−1∇tψ−1 −∇z̃i ·∆ψ−1 +∇h̃ · ∇iψ

−1 = (g̃0
∗)i + ∂ig̃1

∗ in C+
0 ,

∇z̃ : ∇tψ−1 = g̃1
∗ in C+

0 ,
z̃ · ñ = 0, (σ̃(z̃) · ñ)tg = g̃2

∗ on ∂RN
+ ∩ C0,

z̃ = 0 on ∂C+
0 ∩ RN

+ ,
(2.18)

where we have denoted

g̃0
∗ = g∗0 ◦ ψ, g̃1

∗ = g∗1 ◦ ψ, g̃2
∗ = g∗2 ◦ ψ

and
(σ̃(z̃))is := ∇z̃s · ∇iψ

−1 +∇z̃i · ∇sψ
−1, ∀1 ≤ i, s ≤ N.

On the other hand, note that for every function F in H`(Ω) (` ∈ N, ` ≤ 3), F̃ = F ◦ψ belongs
to H`(C+

0 ) and there exists a positive constant C = C(Ω) such that

‖F̃‖H`(C+
0 ) ≤ C‖F‖H`(Ω).
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Now, observe that z̃ ∈ X̃0,2, with

X̃0,2 := {z̃ ∈ H2(C+
0 )N : z̃ = 0 on ∂C+

0 ∩ RN
+ , z̃ · ñ = 0 on ∂RN

+ ∩ C0}.

Let us introduce C1 = ψ(U1) (recall that U1 ⊂⊂ U0) and d = dist(∂C+
0 , ∂C

+
1 ). Then, we

have δkmz̃ ∈ X̃0,2 for any 1 ≤ k ≤ N − 1 and any |m| < d/2, where we have denoted

X̃1,2 := {z̃ ∈ H2(C+
1 )N : z̃ = 0 on ∂C+

1 ∩ RN
+ , z̃ · ñ = 0 on ∂RN

+ ∩ C1},

and
δkm(f) := τ km(f)− f, τ km(f) = (ξ → f(ξ +mek)) (2.19)

(see (2.13) and (2.15)). We denote now w̃ = δkmz̃, π̃ = δkmh̃. We have :

δkm(Hess(z̃i) : ∇ψ−1∇tψ−1) = Hess(w̃i) : ∇ψ−1∇tψ−1+Hess(z̃i(ξ+mek)) : δkm(∇ψ−1∇tψ−1).

δkm(∇z̃i ·∆ψ−1) = ∇w̃i ·∆ψ−1 +∇z̃i(ξ +mek) · δkm(∆ψ−1).

δkm(∇z̃ : ∇tψ−1) = ∇w̃ : ∇tψ−1 +∇z̃(ξ +mek) : δkm∇tψ−1

and
δkm(∇h̃ · ∇iψ

−1) = ∇π̃ · ∇iψ
−1 +∇h̃(ξ +mek) · δkm∇iψ

−1.

Additionally,
δkm(z̃ · ñ) = w̃ · ñ

and

δkm((σ(z̃, h̃)·ñ)tg) = (σ̃(w̃)·ñ)tg+

[
N∑
s=1

(∇z̃s(ξ +mek) · δkm∇iψ
−1 +∇z̃i(ξ +mek) · δkm∇sψ

−1)ñs

]
tg

on ∂RN
+∩C1. The last two identities readily follow from (2.19) and the fact that ñj(ξ+mek) =

ñj(ξ) on C1∩∂RN
+ , for every k = 1, . . . , N−1 and for every j = 1, . . . , N . Taking into account

the above identities and (2.18), the pair (w̃, π̃) satisfies:
−Hess(w̃i) : ∇ψ−1∇tψ−1 −∇w̃i ·∆ψ−1 +∇π̃ · ∇iψ

−1 = G0,i + ∂iG1 in C+
1 ,

∇w̃ : ∇tψ−1 = G1 in C+
1 ,

w̃ · ñ = 0, (σ̃(w̃) · ñ)tg = G2 on ∂RN
+ ∩ C1,

(2.20)
where

G0,i =δkm(g̃0
∗)i +Hess(z̃i(ξ +mek)) : δkm(∇ψ−1∇tψ−1) +∇z̃i(ξ +mek) · δkm∆ψ−1

+ ∂i(∇z̃(ξ +mek) : δkm∇tψ−1)−∇h̃(ξ +mek) · δkm∇iψ
−1,

G1 =δkm(g̃1
∗)−∇z̃(ξ +mek) : δkm∇tψ−1,

G2 =δkm(g̃2
∗)−

[
N∑
s=1

(∇z̃s(ξ +mek) · δkm∇iψ
−1 +∇z̃i(ξ +mek) · δkm∇sψ

−1)ñs

]
tg

.

Let us now estimate G0,i in the L2(C+
1 ) norm. We have

‖δkm(g̃0
∗)i‖L2(C+

1 ) ≤ C|m|‖∇(g̃0
∗)i‖L2(C+

1 ) ≤ C|m|‖(g̃0
∗)i‖H1(C+

1 ),
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‖Hess(z̃i(ξ +mek)) : δkm(∇ψ−1∇tψ−1)‖L2(C+
1 ) ≤ C|m|‖z̃‖H2(C+

1 )N ,

‖∇z̃i(ξ +mek) · δkm∆ψ−1‖L2(C+
1 ) ≤ C(k,Ω)|m|‖∇z̃i‖L2(C+

1 )N ,

‖∂i(∇z̃(ξ +mek) : δkm∇tψ−1)‖L2(C+
1 ) ≤ C|m|‖z̃‖H2(C+

1 )N

and
‖∇h̃(ξ +mek) · δkm∇iψ

−1‖L2(C+
1 ) ≤ C|m|‖∇h̃‖L2(C+

1 )N .

Therefore
‖G0‖L2(C+

1 )N ≤ C|m|
(
‖g∗0‖H1(Ω)N + ‖z‖H2(Ω)N + ‖∇h‖L2(Ω)

)
.

In the same way we can estimate G1 in H1(C+
1 ) from

‖δkm(g̃1
∗)‖H1(C+

1 ) ≤ |m|‖g̃1
∗‖H2(C+

1 )

and we obtain
‖G1‖H1(C+

1 ) ≤ C|m|
(
‖g∗1‖H2(Ω) + ‖z‖H2(Ω)N

)
.

Finally, for G2 we get

‖G2‖H1/2(∂RN+∩C1)N ≤ C|m|(‖g̃∗2‖H3/2(∂RN+∩C1)N + ‖z̃‖H3/2(∂RN+∩C1)N ).

Then, using the definition of g∗i (i = 0, 1, 2) given in (2.17) and the estimate (2.13) for the
solutions of the stationary problems (2.12) and (2.16), we obtain

‖G0‖L2(C+
1 )N ≤ C|m|

(
‖g0‖H1(Ω)N + ‖g1‖H1(Ω) + ‖g2‖H1/2(∂Ω)N

)
,

‖G1‖H1(C+
1 ) ≤ C|m|

(
‖g0‖L2(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H1/2(∂Ω)N

)
and

‖G2‖H1/2(∂RN+∩C1)N ≤ C|m|
(
‖g2‖H3/2(∂Ω)N + ‖g0‖L2(Ω)N + ‖g1‖H1(Ω)

)
.

In consequence, the solution of (2.20) belongs to X̃1,2 ×H1(C+
1 ) and satisfies

‖δkmz̃‖H2(C+
1 )N + ‖δkmh̃‖H1(C+

1 ) ≤ C|m|
(
‖g0‖H1(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H3/2(∂Ω)N

)
for k = 1, . . . , N − 1. Taking m→ 0, this implies (∂kz̃, ∂kh̃) ∈ H2(C+

1 )N ×H1(C+
1 ) and

‖∂kz̃‖H2(C+
1 ) + ‖∂kh̃‖H1(C+

1 ) ≤ C(‖g0‖H1(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H3/2(∂Ω)N )

for 1 ≤ k ≤ N − 1. Now, we will prove that
( ∂z̃i

∂ξN
,
∂h̃

∂ξN

)
∈ H2(C+

1 ) × H1(C+
1 ) for every

i = 1, . . . , N .
From (2.18) we have

− ∂2z̃i

∂ξ2
N

N∑
k=1

∣∣∣∂ξN
∂xk

∣∣∣2 +
∂h̃

∂ξN

∂ξN
∂xi

∈ H1(C+
1 ), ∀i = 1, . . . N. (2.21)

Then

−
(

N∑
k=1

∣∣∣∂ξN
∂xk

∣∣∣2)( N∑
i=1

∂3z̃i

∂ξ3
N

∂ξN
∂xi

)
+
∂2h̃

∂ξ2
N

N∑
i=1

∣∣∣∂ξN
∂xi

∣∣∣2 ∈ L2(C+
1 ). (2.22)
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On the other hand, from the divergence free condition (see (2.18)) we get

N∑
i=1

∂z̃i

∂ξN

∂ξN
∂xi

= −
N∑

i=1

(
N−1∑
k=1

∂z̃i

∂ξk

∂ξk
∂xi

)
+ g̃1

∗ ∈ H2(C+
1 ),

so that
N∑

i=1

∂3z̃i

∂ξ3
N

∂ξN
∂xi

∈ L2(C+
1 ). (2.23)

From (2.22) and (2.23), we obtain that

∂2h̃

∂ξ2
N

N∑
i=1

∣∣∣∂ξN
∂xi

∣∣∣2 ∈ L2(C+
1 )

and therefore h̃ ∈ H2(C+
1 ). Coming back to (2.21) we obtain that

∂3z̃i

∂ξ3
N

N∑
k=1

∣∣∣∂ξN
∂xk

∣∣∣2 ∈ L2(C+
1 ), ∀i = 1, . . . , N.

Therefore h̃ ∈ H2(C+
1 ) and z̃ ∈ H3(C+

1 )N , so that (∂kz, ∂kh) ∈ H2(Ω∩ Ũ)N ×H1(Ω∩ Ũ) for
k = 1, . . . , N and we can conclude that (z, h) ∈ H3(Ω∩ Ũ)N ×H2(Ω∩ Ũ) for every Ũ ⊂⊂ U
with the estimate

‖z‖H3(Ω∩Ũ)N + ‖h‖H2(Ω∩Ũ) ≤ C
(
‖g0‖H1(Ω∩Ũ)N + ‖g1‖H2(Ω∩Ũ) + ‖g2‖H3/2(∂Ω∩Ũ)N

)
. (2.24)

This, together with (2.14), gives the following estimate for the solution of the stationary
system (2.11):

‖u‖H3(Ω)N + ‖θ‖H2(Ω)

≤ C
(
‖f0‖H1(Ω)N + ‖ut‖H1(Ω)N + ‖f2‖H3/2(∂Ω)N + ‖Au‖H3/2(∂Ω)N

)
.

(2.25)

Now, to estimate the term ‖ut(t)‖H1(Ω)N we multiply (2.8) by

∂t(B(u, θ)) := −∇ ·Dut +∇θt

and integrate in Ω. We get

−
∫

Ω

ut∇ ·Dutdx+

∫
Ω

ut · ∇θtdx+
1

2

d

dt

∫
Ω

|B(u, θ)|2dx =

∫
Ω

f0 · ∇θtdx−
∫

Ω

f0∇ ·Dutdx.

Integrating by parts and using that f0 belongs to W , we obtain∫
Ω

|∇ut|2dx+
1

2

d

dt

∫
Ω

|B(u, θ)|2dx−
∫
∂Ω

ut · (Dut · n)tgdσ

=

∫
Ω

∇f0 · ∇utdx−
∫
∂Ω

f0 · (Dut · n)tgdσ.
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We use now (Dut · n)tg = ∂tf2 − ∂t(Au) :∫
Ω

|∇ut|2dx+
1

2

d

dt

∫
Ω

|B(u, θ)|2dx+

∫
∂Ω

∂t(Au) · utdσ

=

∫
Ω

∇f0 · ∇utdx+

∫
∂Ω

(∂tf2) · utdσ +

∫
∂Ω

∂t(Au) · f0dσ −
∫
∂Ω

∂tf2 · f0dσ,

for almost every t ∈ (0, T ). Coming back to (2.25), we get

‖∇ut‖2
L2(Ω)N + ‖u‖2

H3(Ω)N +
1

2

d

dt

∫
Ω

|B(u, θ)|2dx+ ‖θ‖2
H2(Ω)

≤ C
(
‖f0‖2

H1(Ω)N + ‖f2‖2
H3/2(∂Ω)N + ‖Au‖2

H3/2(∂Ω)N +

∫
∂Ω

|∂t(Au)||ut|dσ

+

∫
∂Ω

|∂t(Au)||f0|dσ +

∫
∂Ω

|∂tf2 · ut|dσ +

∫
∂Ω

|∂tf2 · f0|dσ + ‖ut‖2
L2(Ω)N

)
,

(2.26)

for almost every t ∈ (0, T ).
In order to estimate the third term in (2.26) we use that

H3/2(∂Ω) ·H3/2(∂Ω) ⊂ H3/2(∂Ω) continuously.

Then

‖Au‖2
H3/2(∂Ω)N ≤ C‖A‖2

H3/2(∂Ω)N×N‖u‖2
H3/2(∂Ω)N ≤ C‖A‖2

H3/2(∂Ω)N×N‖u‖2
H2(Ω)N .

From this estimate and (2.26) we obtain

‖∇ut‖2
L2(Q)N + ‖u‖2

L2(H3(Ω)N ) + ‖B(u, θ)‖2
L∞(L2(Ω)N ) + ‖θ‖2

L2(H2(Ω))

≤ C
(
‖f0‖2

L2(H1(Ω)N ) + ‖f2‖2
L2(H3/2(∂Ω)N ) + ‖A‖2

L∞(H3/2(∂Ω)N×N )‖u‖2
L2(H2(Ω)N )

+

∫∫
Σ

(|∂t(Au)|+ |∂tf2|)(|ut|+ |f0|)dσdt+ ‖B(u0, θ(0))‖2
L2(Ω)N + ‖ut‖2

L2(Q)N

)
,

(2.27)

where θ(0) is defined (up to a constant) by
−∆θ(0)(·) = −∇f0(·, 0) in Ω,

∂θ(0)

∂n
(·) = ∆u0(·) · n+ f0(·, 0) · n on ∂Ω.

(2.28)

Now, we estimate the boundary terms in (2.27). First, we find∫∫
Σ

|∂t(Au)|(|ut|+ |f0|)dσdt ≤ Cδ(‖A‖4
L∞(Σ)N×N‖ut‖2

L2(Q)N + ‖At‖2
L2(Σ)N×N‖u‖2

L∞(H1(Ω)N ))

+ δ(‖ut‖2
L2(H1(Ω)N ) + ‖f0‖2

L2(H1(Ω)N ))

for any δ > 0. The second term can be estimated as follows :∫∫
Σ

|∂tf2|(|ut|+ |f0|)dσdt ≤ Cδ‖∂tf2‖2
L2(H1/2(∂Ω)N ) + δ(‖ut‖2

L2(H1(Ω)N ) + ‖f0‖2
L2(H1(Ω)N )).
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Putting together these estimates and (2.27) we can deduce

‖ut‖2
L2(H1(Ω)N ) + ‖u‖2

L2(H3(Ω)N ) + ‖B(u, θ)‖2
L∞(L2(Ω)N ) + ‖θ‖2

L2(H2(Ω))

≤ C

(
‖f0‖2

L2(H1(Ω)N ) + ‖f2‖2
L2(H3/2(∂Ω)N ) + ‖∂tf2‖2

L2(H1/2(∂Ω)N ) + ‖B(u0, θ(0))‖2
L2(Ω)N

+
(

1 + ‖A‖2
L∞(H3/2(∂Ω)N×N ) + ‖∂tA‖2

L2(Σ)N×N + ‖A‖4
L∞(Σ)N×N

)
‖u‖2

Y1

)
.

Using (2.6) in order to estimate ‖u‖2
Y1

and elliptic estimates (2.28), we get

‖ut‖2
L2(H1(Ω)N ) + ‖u‖2

L2(H3(Ω)N ) + ‖B(u, θ)‖2
L∞(L2(Ω)N ) + ‖θ‖2

L2(H2(Ω))

≤ C(A)
(
‖f0‖2

Y1
+ ‖f2‖2

L2(H3/2(∂Ω)N ) + ‖∂tf2‖2
L2(H1/2(∂Ω)N ) + ‖u0‖2

H3(Ω)N

)
,

(2.29)

where

C(A) := Ce
CT‖A‖2

P0
ε (1 + ‖A‖4

P 0
ε
)
(

1 + ‖A‖2
L∞(H3/2(∂Ω)N×N ) + ‖∂tA‖2

L2(Σ)N×N + ‖A‖4
L∞(Σ)N×N

)
.

Step 2. Taking into account the previous step, we will prove that the weak solution (u, θ)
of (2.12) belongs to H4(Ω)N ×H3(Ω) whenever

g∗0 ∈ H2(Ω ∩ U0)N , g∗1 ∈ H3(Ω ∩ U0), g∗2 ∈ H5/2(∂Ω ∩ U0)N , (2.30)

also, ψ is a W 4,∞ diffeomorphism. Here, we define

X̃1,3 := {z̃ ∈ H3(C+
1 )N : z̃ = 0 on ∂C+

1 ∩ RN
+ , z̃ · ñ = 0 on ∂RN

+ ∩ C1}.

Let us prove that z̃ satisfies δkmz̃ ∈ X̃1,3, for k = 1, . . . , N − 1 and |m| < d/2 (recall that
d = dist(∂C+

0 , ∂C
+
1 )), where z̃ fulfills (2.18). We have the following estimates for G0, G1 and

G2 (which were defined right after (2.20)) :

‖G0‖H1(C+
1 )N ≤ C|m|

(
‖g∗0‖H2(Ω)N + ‖z‖H3(Ω)N + ‖∇h‖H1(Ω)

)
.

‖G1‖H2(C+
1 ) ≤ C|m|

(
‖g∗1‖H3(Ω) + ‖z‖H3(Ω)N

)
and

‖G2‖H3/2(∂RN+∩C1)N ≤ C|m|(‖g̃∗2‖H5/2(∂RN+∩C1)N + ‖z̃‖H5/2(∂RN+∩C1)N ).

Then, using (2.30) together with the definition of g∗i (i = 0, 1, 2) given in (2.17) and the
estimate (2.29) for the solutions of the stationary problems (2.12) and (2.16), we obtain

‖G0‖H1(C+
1 )N ≤ C|m|

(
‖g0‖H2(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H3/2(∂Ω)N

)
,

‖G1‖H2(C+
1 ) ≤ C|m|

(
‖g0‖H2(Ω)N + ‖g1‖H3(Ω) + ‖g2‖H3/2(∂Ω)N

)
and

‖G2‖H3/2(∂RN+∩C1)N ≤ C|m|
(
‖g0‖H1(Ω)N + ‖g1‖H2(Ω) + ‖g2‖H5/2(∂Ω)N

)
.

33



In consequence, (δkmz̃, δ
k
mh̃) ∈ X̃1,3 ×H2(C+

1 ) and

‖δkmz̃‖H3(C+
1 )N + ‖δkmh̃‖H2(C+

1 ) ≤ C|m|
(
‖g0‖H2(Ω)N + ‖g1‖H3(Ω) + ‖g2‖H5/2(∂Ω)N

)
for k = 1, . . . , N − 1.

Arguing now as in Step 1, we find

‖u‖H4(Ω)N + ‖h‖H3(Ω) ≤ C
(
‖g0‖H2(Ω)N + ‖g1‖H3(Ω) + ‖g2‖H5/2(∂Ω)N

)
. (2.31)

From (2.31) we obtain the estimate for the solution of the stationary system (2.11):

‖u‖H4(Ω)N +‖θ‖H3(Ω) ≤ C
(
‖f0‖H2(Ω)N +‖ut‖H2(Ω)N +‖f2‖H5/2(∂Ω)N +‖Au‖H5/2(∂Ω)N

)
, (2.32)

for almost every t ∈ (0, T ). Now, in order to estimate the second term of the right-hand side
of (2.32), we consider the system satisfied by (∂tu, ∂tθ) (see (2.8)) :

∂t(ut)−∇ · (Dut) +∇θt = ∂tf0 in Q,
∇ · ut = 0 in Q,
ut · n = 0, (σ(ut, θt) · n)tg + (Aut)tg = ∂tf2 − (Atu)tg on Σ,
ut(·, 0) = ∇ ·Du0(·)−∇θ(·, 0) + f0(·, 0) in Ω.

(2.33)

In virtue of Lemma 2.2 we have that (ut, θt) is the strong solution of (2.33). Furthermore,
we get ut ∈ Y1 and

‖ut‖Y1 ≤ e
CT‖A‖2

P0
ε (1 + ‖A‖2

P 0
ε
)
(
‖∂tf0‖L2(Q)N + ‖f0‖L∞(H1(Ω)N ) + ‖∂tf2‖L2(H1/2(∂Ω)N )

+ ‖∂tf2‖H1/4+ε(H−ε(Ω)N ) + ‖Atu‖H1/4+ε(H−ε(Ω)N )

+ ‖Atu‖L2(H1/2(∂Ω)N ) + ‖u0‖H3(Ω)N∩W

)
.

(2.34)

Therefore, from (2.32) and (2.34) we obtain

‖ut‖Y1 + ‖u‖L2(H4(Ω)N ) + ‖θ‖L2(H3(Ω))

≤ e
CT‖A‖2

P0
ε (1 + ‖A‖2

P 0
ε
)
(
‖f0‖L2(H2(Ω)N ) + ‖∂tf0‖L2(Q)N + ‖f2‖L2(H5/2(∂Ω)N )

+ ‖∂tf2‖L2(H1/2(∂Ω)N ) + ‖∂tf2‖H1/4+ε(H−ε(Ω)N ) + ‖Atu‖H1/4+ε(H−ε(Ω)N )

+ ‖Atu‖L2(H1/2(∂Ω)N ) + ‖Au‖L2(H5/2(∂Ω)N ) + ‖u0‖H3(Ω)N∩W

)
.

(2.35)

Finally, we estimate ‖Atu‖L2(H1/2(∂Ω)N ), ‖Atu‖H1/4+ε(H−ε(Ω)N ) and ‖Au‖L2(H5/2(∂Ω)N ) by:

‖Atu‖L2(H1/2(∂Ω)N ) ≤ C‖At‖L2(H1/2(∂Ω)N×N )‖u‖L∞(H2(Ω)N )

‖Atu‖H1/4+ε(H−ε(Ω)N ) ≤ C‖At‖H1/4+ε(L2(∂Ω)N×N )

(
‖u‖L2(H3(Ω)N ) + ‖u‖H1(H1(Ω)N )

)
and

‖Au‖L2(H5/2(∂Ω)N ) ≤ C
(
‖A‖L∞(H3/2(∂Ω)N×N )‖u‖L2(H3(Ω)N )+‖A‖L2(H5/2(∂Ω)N×N )‖u‖L∞(H2(Ω)N )

)
.

Using (2.29), (2.35) and the previous estimates, we find the desired estimate (2.9). This
concludes the proof of Theorem 2.3.
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2.3 Carleman inequality for the adjoint system

In this section we will prove a Carleman estimate for the adjoint system of (2.3). In order to
do so, we are going to introduce some weight functions. Let ω0 be a nonempty open subset
of RN such that ω0 b ω1 b ω′ b ω and η ∈ C2(Ω) such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω.

The existence of such a function η is proved in [FI96b]. Then, for all λ ≥ 1 we consider the
following weight functions:

α(x, t) =
e2λ‖η‖∞ − eλη(x)

(t(T − t))11
, ξ(x, t) =

eλη(x)

(t(T − t))11
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).

(2.36)

We consider now a backwards non homogeneous system associated to the Stokes equation:
−ϕt −∇ · (Dϕ) +∇π = g in Q,
∇ · ϕ = 0 in Q,
ϕ · n = 0, (σ(ϕ, π) · n)tg + (At(x, t)ϕ)tg = 0 on Σ,
ϕ(·, T ) = ϕT (·) in Ω,

(2.37)

where g ∈ L2(Q)N and ϕT ∈ H. Our Carleman estimate is given in the following proposition.

Proposition 2.4 Let A ∈ P 1
ε ∩ P 2. There exists a constant λ0, such that for any λ > λ0

there exist two constants C(λ) > 0 increasing on ‖A‖P 1
ε ∩P 2 and s0(λ) > 0 such that for any

i ∈ {1, . . . , N}, any g ∈ L2(Q)N and any ϕT ∈ H, the solution of (2.37) satisfies

s3

∫∫
Q

e−6sα∗(ξ∗)3|ϕ|2dxdt

≤ C
(∫∫
Q

e−4sα∗ |g|2dxdt+ s7

N∑
j=1,j 6=i

T∫
0

∫
ω′

e−4sα̂−2sα∗(ξ̂)12|ϕj|2dxdt
) (2.38)

for every s ≥ s0.

Before giving the proof of Proposition 2.4, we present some technical results. We first
present a Carleman inequality proved in [FCGBGP06] for a general heat equation with
Fourier boundary conditions. To this end, let us introduce the system

−ψt −∆ψ = f1 +∇ · f2 in Q,
(∇ψ + f2) · n = f3 on Σ,
ψ(·, T ) = ψT (·) in Ω,

(2.39)

where f1 ∈ L2(Q), f2 ∈ L2(Q)N and f3 ∈ L2(Σ). We present now this result:
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Lemma 2.5 Under the previous assumptions on f1, f2 and f3, there exist λ, σ1, σ2 and C,
only depending on Ω and ω, such that, for any λ ≥ λ, any s ≥ s = σ1(eσ2λT + T 2) and any
ψT ∈ L2(Ω), the weak solution to (2.39) satisfies∫∫

Q

e−2sα(sλ2ξ|∇ψ|2 + s3λ4ξ3|ψ|2)dxdt+ s2λ3

∫∫
Σ

e−2sαξ2|ψ|2dσdt

≤C
(∫∫
Q

e−2sα(|f1|2 + s2λ2ξ2|f2|2)dxdt

+ sλ

∫∫
Σ

e−2sαξ|f3|2dσdt+ s3λ4

∫∫
ω1×(0,T )

e−2sαξ3|ψ|2dxdt
)
.

(2.40)

The next lemma is a result for elliptic equations with non homogeneous boundary condition
that can be found in [IP03] (see also [FCGIP04]).

Lemma 2.6 Let y ∈ H1(Ω) satisfy

∆y = f0 +
N∑
j=1

∂fj
∂xj

, in Ω ; y = g, on ∂Ω,

with f0, fj ∈ L2(Ω) and g ∈ H1/2(∂Ω). Then there exist three constants C > 0, λ̂ > 1 and

τ̂ > 1 such that for any λ ≥ λ̂ and any τ ≥ τ̂ , we have∫
Ω

|∇y|2e2τeληdx+ τ 2λ2

∫
Ω

e2λη|y|2e2τeληdx

≤ C
(
τ 1/2e2τ‖g‖2

H1/2(∂Ω) + τ−1λ−2

∫
Ω

e−λη|f0|2e2τeληdx

+
N∑
j=0

τ

∫
Ω

eλη|fj|2e2τeληdx+

∫
ω1

(|∇y|2 + τ 2λ2e2λη|y|2)e2τeληdx
)
.

(2.41)

Remark 2.2 We can eliminate the local integral of |∇y|2 in (2.41) at the price of having a
local term of |y|2 in a open set ω2 satisfying ω1 b ω2 b ω′. For these details, we invite the
interested reader to see [FCGIP04].

The next technical result corresponds to the Lemma 3 in [CG09].

Lemma 2.7 Let r ∈ R. There exists C > 0 depending only on r,Ω, ω0 and η such that, for
every T > 0 and every u ∈ L2(0, T ;H1(Ω)),

s2λ2

∫∫
Q

e−2sαξr+2|u|2dxdt

≤ C
(∫∫
Q

e−2sαξr|∇u|2dxdt+ s2λ2

∫∫
ω0×(0,T )

e−2sαξr+2|u|2dxdt
)
,

(2.42)
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foe every λ ≥ C and every s ≥ CT 22.

Remark 2.3 In [CG09], [FCGBGP06] and [IP03] slightly different weight functions are
used to prove the above results. However, this does not change the result since the important
property is that α goes to 0 polynomially when t tends to 0 and T .

We will now prove Proposition 2.4. Without any lack of generality, we treat the case N = 2
and i = 2. The arguments can be easily extended to the general case. Let us introduce (w, q)
and (z, r), the solutions of the following systems:

−wt −∇ · (Dw) +∇q = ρg in Q,
∇ · w = 0 in Q,
w · n = 0, (σ(w, q) · n)tg + (At(x, t)w)tg = 0 on Σ,
w(·, T ) = 0 in Ω,

(2.43)

and 
−zt −∇ · (Dz) +∇r = −ρ′ϕ in Q,
∇ · z = 0 in Q,
z · n = 0, (σ(z, r) · n)tg + (At(x, t)z)tg = 0 on Σ,
z(·, T ) = 0 in Ω,

(2.44)

where ρ(t) = e−2sα∗ . Adding (2.43) and (2.44), we see that (w + z, q + r) solves the same
system as (ρϕ, ρπ), where (ϕ, π) is the solution of (2.37). By uniqueness of the Stokes system
with Navier-slip boundary conditions, we have

ρϕ = w + z and ρπ = q + r. (2.45)

For system (2.43) we will use Lemma 2.2 and the regularity estimate (2.6), namely

‖w‖2
L2(0,T ;H2(Ω)2) + ‖w‖2

H1(0,T ;L2(Ω)2) ≤ C‖ρg‖2
L2(Q)2 , (2.46)

and for the system (2.44) we will use the ideas of [CG13] and [CG09].
We apply the operator ∇ to the equation satisfied by z1 and we denote ψ := ∇z1. Then ψ
satisfies

−ψt −∆ψ = −∇(ρ′ϕ1)−∇∂1r in Q.

Using Lemma 4.1 with f1 = −∇(ρ′ϕ1)−∇∂1r and f2 = 0, we obtain

s3

∫∫
Q

e−2sαξ3|ψ|2dxdt ≤ C
(
s3

T∫
0

∫
ω1

e−2sαξ3|ψ|2dxdt

+ s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt+

∫∫
Q

e−2sα|∇(ρ′ϕ1) +∇∂1r|2dxdt
) (2.47)

for every λ ≥ λ and s ≥ s0. Here and in the following, C will denote a generic constant
depending on Ω, ω and λ.
The rest of the proof is divided in three steps.
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a) In step 1, using Lemma 2.7 we estimate global integrals of z1 and z2. In addition, we
partially estimate the pressure in the right-side of (2.47).

b) In step 2, we will estimate the normal derivative appearing in the right-hand side of
(2.47) and the global term of the pressure obtained in step 1.

c) In step 3, we will estimate all the local terms by a local term of ϕ1.

Step 1. Estimate of z1. We use Lemma 2.7 with u = ∇z1 and r = 3:

s5

∫∫
Q

e−2sαξ5|z1|2dxdt ≤ C
(
s3

∫∫
Q

e−2sαξ3|ψ|2dxdt+ s5

T∫
0

∫
ω0

e−2sαξ5|z1|2dxdt
)

(2.48)

for every s ≥ C.
Estimate of z2. Let us first establish a general estimate : ∀ε′ > 0, ∃C ∈ R :

‖u‖(H1/2+ε′ (Ω)2∩H)′ ≤ C(‖u1‖L2(Ω)+‖u1 n1‖L2(∂Ω)+‖∂1u1‖H−1/2(Ω)) ≤ C‖u1‖H1/2+ε′ (Ω), ∀u ∈ W.
(2.49)

Indeed, for any f ∈ Hε′ := H1/2+ε′(Ω)2 ∩H, we have (after an integration by parts)∫
Ω

u · f dx =

∫
Ω

u1 f1 dx−
∫
∂Ω

u1 n1 f̃2 dσ +

∫
Ω

∂1u1 f̃2 dx, (2.50)

where f̃2 ∈ H1/2+ε′(Ω) satisfies

∂2f̃ = f2 a. e. Ω and ‖f̃2‖H1/2+ε′ (Ω) ≤ C‖f2‖H1/2+ε′ (Ω) ≤ C‖f‖Hε′ .

Then, from (2.50), we readily obtain (2.49).

Let us now apply (2.49) for u := z. We deduce

∀ε′ > 0, ∃C ∈ R : ‖z‖(Hε′ )
′ ≤ C‖z1‖H1/2+ε′ (Ω),

so that, using that H1/2+ε′(Ω) is the interpolation space (H1(Ω), L2(Ω))1/2+ε′,2, we find

s4−2ε′
∫ T

0

e−2sα∗(ξ∗)4−2ε′‖z‖2
(Hε′ )

′dt ≤ Cs3

∫∫
Q

e−2sα∗(ξ∗)3
(
s2(ξ∗)2|z1|2 +|∇z1|2

)
dxdt. (2.51)

Putting together (2.47), (2.48) and (2.51) we have for the moment

s5

∫∫
Q

e−2sαξ5|z1|2dxdt+s4−2ε′
∫ T

0

e−2sα∗(ξ∗)4−2ε′‖z‖2
(Hε′ )

′dt+ s3

∫∫
Q

e−2sαξ3|ψ|2dxdt

≤C
( T∫

0

∫
ω1

e−2sα(s5ξ5|z1|2 + s3ξ3|∇z1|2)dxdt

+ s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt+

∫∫
Q

e−2sα|∇(ρ′ϕ1) +∇∂1r|2dxdt
)

(2.52)
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for every s ≥ C.
Taking into account that

|α∗t | ≤ C(ξ∗)12/11, |ρ′| ≤ Csρ(ξ∗)12/11 (2.53)

and (2.45), we obtain∫∫
Q

e−2sα|∇(ρ′ϕ1)|2dxdt =

∫∫
Q

e−2sα|ρ′|2|ρ|−2|∇(ρϕ1)|2dxdt

≤C
(
s2

∫∫
Q

e−2sα(ξ∗)24/11|∇w1|2 + s2

∫∫
Q

e−2sα(ξ∗)24/11|∇z1|2dxdt
)
.

(2.54)

The fact that s2e−2sα∗(ξ∗)24/11 is bounded allows us to estimate the first term in the right-
hand side of (2.54) using (2.46). On the other hand, the second term in the right-hand side
of (2.54) can be absorbed by the third term in the left-hand side of (2.52).
Additionaly, using the divergence-free condition on the equation of (2.44), we see that

∆r = 0 in Q,

then

∆(∇∂1r) = 0 in Q.

Using Lemma 2.6 with y = ∇∂1r and Remark 2.2 we obtain

τ 2

∫
Ω

e2λη|∇∂1r|2e2τeληdx ≤ C
(
τ 1/2e2τ‖∇∂1r‖2

H1/2(∂Ω) + τ 2

∫
w2

e2λη|∇∂1r|2e2τeληdx
)

for every τ ≥ C. Now we take

τ =
s

(t(T − t))11
,

multiply the last inequality by

exp
(
−2s

e2λ‖η‖∞

(t(T − t))11

)
,

and integrate with respect to t in (0, T ) to obtain∫∫
Q

e−2sα|∇∂1r|2dxdt

≤C
(
s−3/2

T∫
0

e−2sα∗(ξ∗)−3/2‖∇∂1r‖2
H1/2(∂Ω)dt+

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt
)
,

for all s ≥ C.
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Combining this with (2.52) and (2.54), we have for the moment

s5

∫∫
Q

e−2sαξ5|z1|2dxdt+ s4−2ε′
∫ T

0

e−2sα∗(ξ∗)4−2ε′‖z‖2
(Hε′ )

′dt+ s3

∫∫
Q

e−2sαξ3|∇z1|2dxdt

≤C
(
‖ρg‖2

L2(Q)2 + s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt+ s−3/2

T∫
0

e−2sα∗(ξ∗)−3/2‖∇∂1r‖2
H1/2(∂Ω)dt

+

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt+

T∫
0

∫
ω1

e−2sα(s5ξ5|z1|2 + s3ξ3|∇z1|2)dxdt
)
,

(2.55)
for every s ≥ C.

Step 2. In this step we deal with the boundary terms in (2.55), i.e,

s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt and s−3/2

T∫
0

e−2sα∗(ξ∗)−3/2‖∇∂1r‖2
H1/2(∂Ω)dt.

Let us start by defining

ž := θ̌(t)z, ř := θ̌(t)r, θ̌(t) := s1−ε′e−sα
∗
(ξ∗)10/11−ε′ .

From (2.44), we see that (ž, ř) is the solution of the Stokes system:
−žt −∇ · (Dž) +∇ř = −(θ̌)′z − θ̌ρ′ϕ in Q,
∇ · ž = 0 in Q,
ž · n = 0, (σ(ž, ř) · n)tg + (At(x, t)ž)tg = 0 on Σ,
ž(·, T ) = 0 in Ω.

(2.56)

For this system, we have

‖ž‖2
L2(0,T ;H3/2−ε′ (Ω)2)

≤ C
(
‖s2−ε′e−sα

∗
(ξ∗)2−ε′z‖2

L2(0,T ;(Hε′ )
′ )

+ ‖s2e−sα
∗
(ξ∗)2ρϕ‖2

L2(Q)2

)
≤ C

(
‖s2−ε′e−sα

∗
(ξ∗)2−ε′z‖2

L2(0,T ;(Hε′ )
′ )

+ ‖s2e−sα
∗
(ξ∗)2w‖2

L2(Q)2

)
.

(2.57)
Observe that this inequality comes from Lemma 2.1 with a right-hand side in the interpolation
space

(L2(0, T ;W ′), L2(Q))1/2+ε′,2 = L2(0, T ; (Hε′)
′
).

The fact that s3/2e−sα
∗
(ξ∗)3/2 is bounded allows us to use (2.46) and conclude that ‖ž‖2

L2(0,T ;H3/2−ε′ (Ω)2)

is bounded by the left-hand side of (2.55) and ‖ρg‖2
L2(Ω)2 . Using that

L2(Ω)2 = ((Hε′)
′
, H3/2−ε′(Ω)2)3/4−ε′/2,2,
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we deduce that s7/2−3ε′‖e−sα∗(ξ∗)7/4−3ε′/2z‖2
L2(Q)2 is bounded by the left-hand side of (2.55)

and ‖ρg‖2
L2(Ω)2 . Taking ε′ > 0 small enough, we deduce in particular that

s3

∫ ∫
Q

e−2sα∗(ξ∗)3|z|2dx dt

is bounded by the left-hand side of (2.55) and ‖ρg‖2
L2(Ω)2 .

Next, we define

z∗ := θ∗(t)z, r∗ := θ∗(t)r, θ∗(t) := s1/2e−sα
∗
(ξ∗)9/22.

From (2.44), we see that (z∗, r∗) is the solution of (2.56) with θ̌ replaced by θ∗. Using again
(2.6) and taking into account (2.53), we deduce

‖z∗‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) + ‖r∗‖2

L2(0,T ;H1(Ω)) + ‖θ∗zt‖2
L2(0,T ;L2(Ω)2)

≤C
(
‖s3/2e−sα

∗
(ξ∗)3/2z‖2

L2(Q)2 + ‖s3/2e−sα
∗
(ξ∗)3/2w‖2

L2(Q)2

)
.

(2.58)

Arguing as before, we conclude that ‖z∗‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) is bounded by the left-

hand side of (2.55) and ‖ρg‖2
L2(Ω)2 .

Now, let
ẑ := θ̂(t)z, r̂ := θ̂(t)r, θ̂ := s−1/2e−sα

∗
(ξ∗)−15/22.

From (2.44), (ẑ, r̂) is the solution of (2.56) with θ̌ replaced by θ̂. Observe that the right-hand
side of this system can be considered in L2(0, T ;H2(Ω)2) ∩H1(0, T ;L2(Ω)2) and thus, using
the regularity estimate (2.9) we have

‖ẑ‖2
L2(0,T ;H4(Ω)2)∩H1(0,T ;H2(Ω)2)∩H2(0,T ;L2(Ω)2) + ‖r̂‖2

L2(0,T ;H3(Ω))

≤C
(
‖θ̂′z‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) + ‖θ̂ρ′ϕ‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

)
≤C
(
‖ρg‖2

L2(Q)2 + ‖z∗‖2
L2(0,T ;H2(Ω)2) + ‖θ∗zt‖2

L2(0,T ;L2(Ω)2) + ‖s3/2e−sα
∗
(ξ∗)3/2z‖2

L2(Q)2

)
.

(2.59)
From (2.58), the right-hand side of (2.59) is bounded by

‖s3/2e−sα
∗
(ξ∗)3/2z‖2

L2(Q)2 and ‖ρg‖2
L2(Q)2 .

Coming back to (2.55), we find in particular

s5

∫∫
Q

e−2sαξ5|z1|2dxdt+ s3

∫∫
Q

e−2sα∗(ξ∗)3|z2|2dxdt+ ‖z∗‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

+ ‖ẑ‖2
L2(0,T ;H4(Ω)2)∩H2(0,T ;L2(Ω)2) + ‖r̂‖2

L2(0,T ;H3(Ω))

≤C
(
‖ρg‖2

L2(Q)2 + s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt+ s−3/2

T∫
0

e−2sα∗(ξ∗)−3/2‖∇∂1r‖2
H1/2(∂Ω)dt

+

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt+

T∫
0

∫
ω1

e−2sα(s5ξ5|z1|2 + s3ξ3|∇z1|2)dxdt
)
.

(2.60)
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Observe that the boundary term

s−3/2

T∫
0

e−2sα∗(ξ∗)−3/2‖∇∂1r‖2
H1/2(∂Ω)dt

can be absorbed by the fifth term of the left-hand side of (2.60).
In order to estimate the other boundary term, we notice that α and ξ coincide with α∗ and
ξ∗ respectively on Σ, so that

s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt = s

∫∫
Σ

e−2sα∗ξ∗
∣∣∣∂∇z1

∂n

∣∣∣2dσdt ≤ Cs

T∫
0

e−2sα∗ξ∗‖z1‖2
H5/2+ε(Ω)dt

(2.61)

for every ε > 0. Taking ε =
1

70
(any 0 < ε < 1

70
would work) and thanks to an interpolation

argument between the spaces L2(L2) and L2(H4), we obtain

s43/35

T∫
0

e−2sα∗ξ∗‖z1‖2
H88/35(Ω)dt

≤C
(
s5

T∫
0

e−2sα∗(ξ∗)5‖z1‖2
L2(Ω)dt+ s−1

T∫
0

e−2sα∗(ξ∗)−15/11‖z1‖2
H4(Ω)dt

)
,

for every s ≥ C. Coming back to (2.61) and using the above inequality, the boundary term

s

∫∫
Σ

e−2sαξ
∣∣∣∂∇z1

∂n

∣∣∣2dσdt

can be absorbed by the left-hand side of (2.60). This ends Step 2.
Thus, at this point we have

s5

∫∫
Q

e−2sαξ5|z1|2dxdt+ s3

∫∫
Q

e−2sα∗(ξ∗)3|z2|2dxdt

+ ‖θ̂z‖2
L2(0,T ;H4(Ω)2)∩H2(0,T ;L2(Ω)2) + ‖θ∗z‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

≤ C
(
‖ρg‖2

L2(Q)2 +

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt+

T∫
0

∫
ω1

e−2sα(s5ξ5|z1|2 + s3ξ3|∇z1|2)dxdt
)

(2.62)
for every s ≥ C.

Step 3. In this step, we estimate the local term on ∇∂1r in the right-hand side of (2.62).
The other two local terms can be estimated in an easier way.
Let ω3 be a open subset satisfying ω2 b ω3 b ω′ and let ρ1 ∈ C2

c (ω3) with ρ1 ≡ 1 in ω2 and
ρ1 ≥ 0. Then, integrating by parts and using that ∆r = 0 we get

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt ≤ C

T∫
0

∫
ω3

∆(ρ1e−2sαξ2)|∂1r|2dxdt.
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From (2.44) and the estimate

|∆(ρ1e−2sαξ2)| ≤ Cs2e−2sαξ41ω3 , s ≥ C,

we obtain

T∫
0

∫
ω2

e−2sαξ2|∇∂1r|2dxdt ≤ Cs2

T∫
0

∫
ω3

e−2sαξ4(|z1,t|2 + |∆z1|2 + |ρ′ϕ1|2)dxdt (2.63)

for every s ≥ C. We will now estimate the two first terms in the last integral of (2.63), the
third one being estimated in an easier way.

i) Estimate of z1,t. We integrate by parts with respect to t:

s2

T∫
0

∫
ω3

e−2sαξ4|z1,t|2dxdt =
s2

2

T∫
0

∫
ω3

∂tt(e
−2sαξ4)|z1|2dxdt− s2

T∫
0

∫
ω3

e−2sαξ4z1,ttz1dxdt

≤ C
(
s4

T∫
0

∫
ω3

e−2sα(ξ)68/11|z1|2dxdt+ s2

T∫
0

∫
ω3

θ̂|z1,tt|θ̂−1e−2sαξ4|z1|dxdt
)
,

where we recall that θ̂ := s−1/2e−sα
∗
(ξ∗)−15/22.

Using Young’s inequality for the second term we obtain for every ε > 0

s2

T∫
0

∫
ω3

e−2sαξ4|z1,t|2dxdt

≤C
(
s4

T∫
0

∫
ω3

e−2sαξ7|z1|2dxdt+ ε

T∫
0

∫
ω3

|θ̂|2|z1,tt|2dxdt+ C(ε)s5

T∫
0

∫
ω3

e−4sα+2sα∗ξ10|z1|2dxdt
)
.

(2.64)
The second term in the right-hand side of the above inequality can be absorbed by the
left-hand side of (2.62).

ii) Estimate of ∆z1. Let w4 be an open subset such that w3 b w4 b ω′ and let ρ2 ∈ C2
c (w4)

with ρ2 ≡ 1 in ω3 and ρ2 ≥ 0. Then, an integration by parts gives

s2

T∫
0

∫
ω3

e−2sαξ4|∆z1|2dxdt ≤ s2

T∫
0

∫
ω4

ρ2
2e−2sαξ4|∆z1|2dxdt

=− s2

T∫
0

∫
ω4

∇(ρ2
2e−2sαξ4) · ∇z1∆z1dxdt− s2

T∫
0

∫
ω4

ρ2
2e−2sαξ4∇∆z1 · ∇z1dxdt.

Using the estimate
|∇(ρ2

2e−2sαξ4)| ≤ Cse−2sαξ5ρ2, s ≥ C,
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and again Young’s inequality for the first term, we obtain

s2

T∫
0

∫
ω3

e−2sαξ4|∆z1|2dxdt

≤C
(
s4

T∫
0

∫
ω4

e−2sαξ6|∇z1|2dxdt

︸ ︷︷ ︸
I1

− s2

T∫
0

∫
ω4

ρ2
2e−2sαξ4∇∆z1 · ∇z1dxdt

︸ ︷︷ ︸
I2

) (2.65)

for every s ≥ C.
Now, to estimate I1 we consider w5 an open subset such that w4 b w5 ⊂ ω′ and
ρ3 ∈ C2

c (w5) with ρ3 ≡ 1 in ω4 and ρ3 ≥ 0. Then

I1 ≤ s4

T∫
0

∫
ω5

ρ3e−2sαξ6|∇z1|2dxdt

≤C
(
s6

T∫
0

∫
ω5

e−2sαξ8|z1|2dxdt+ s4

T∫
0

∫
ω5

ρ3e−2sαξ6|∆z1||z1|dxdt
)

=C
(
s6

T∫
0

∫
ω5

e−2sαξ8|z1|2dxdt+ s4

T∫
0

∫
ω5

ρ3θ
∗|∆z1|e−2sα(θ∗)−1ξ6|z1|dxdt

)
,

for every s ≥ C. We recall that θ∗ := s1/2e−sα
∗
(ξ∗)9/22.

Using Young’s inequality for the second term we obtain for every ε > 0:

I1 ≤
(
s6

T∫
0

∫
ω5

e−2sαξ8|z1|2dxdt+ ε

T∫
0

∫
ω5

|θ∗∆z1|2dxdt+ C(ε)s7

T∫
0

∫
ω5

e−4sα+2sα∗ξ12|z1|2dxd
)
,

(2.66)
for every s ≥ C. The second term in the right-hand side of the above inequality can
be absorbed by the left-hand side of (2.62).
Now we estimate I2. An integration by parts gives

I2 ≤ C
(
s3

T∫
0

∫
ω4

e−2sαξ5|∇∆z1||z1|dxdt+ s2

T∫
0

∫
ω4

e−2sαξ4|∆2z1||z1|dxdt
)
.

Using again the Young’s inequality, we obtain by an analogous argument the estimate:

I2 ≤ C
(
ε‖θ̂z1‖2

L2(0,T ;H4(ω4)) + C(ε)s5

T∫
0

∫
ω4

e−4sα+2sα∗ξ10|z1|2dxdt
)
, (2.67)

for every ε > 0 and s ≥ C. The first term in the right-hand side of (2.67) can be
absorbed by the left-hand side of (2.62).
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Finally, using the definition of the weight functions and (2.46), we readily obtain

s7

T∫
0

∫
ω5

e−4sα+2sα∗ξ12|z1|2dxdt

≤ 2s7

T∫
0

∫
ω5

e−4sα̂+2sα∗(ξ̂)12|ρ|2|ϕ1|2dxdt+ 2s7

T∫
0

∫
ω5

e−4sα̂+2sα∗(ξ̂)12|w1|2dxdt

≤ 2s7

T∫
0

∫
ω5

e−4sα̂+2sα∗(ξ̂)12|ρ|2|ϕ1|2dxdt+ C‖ρg‖2
L2(Q)2 .

From (2.62) and (2.63)-(2.67), we conclude the proof of Proposition 2.4.

2.4 Null controllability of the linear system

Here we are concerned with the null controllability of the following system:
yt −∇ · (Dy) +∇p = h+ vχω in Q,
∇ · y = 0 in Q,
y · n = 0, (σ(y, p) · n)tg + (A(x, t)y)tg = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(2.68)

where y0 ∈ W , h is in an appropiate weighted space. We look for a control v ∈ L2(0, T ;H2(ω)N)∩
H1(0, T ;L2(ω)N) such that vi ≡ 0 for some i ∈ {1, . . . , N}.
To do this, let us first state a Carleman inequality with weight functions not vanishing in
t = 0.
Let ` ∈ C2([0, T ]) be a positive function in [0, T ) such that `(t) > t(T − t) for all t ∈ [0, T/4]
and `(t) = t(T − t) for all t ∈ [T/2, T ].
Now, we introduce the following weight functions:

β(x, t) =
e2λ‖η‖∞ − eλη(x)

`11(t)
, γ(x, t) =

eλη(x)

`11(t)
,

β∗(t) = max
x∈Ω

β(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) = min
x∈Ω

β(x, t), γ̂(t) = max
x∈Ω

γ(x, t).

(2.69)

Lemma 2.8 Let i ∈ {1, . . . , N} and let s and λ be like in Proposition 2.4. Then, there
exists a constant C > 0 (depending on s and λ and increasing on ‖A‖P 1

ε ∩P 2) such that every
solution ϕ of (2.37) satisfies:

‖ϕ(·, 0)‖2
L2(Ω)N +

∫∫
Q

e−6sβ∗(γ∗)3|ϕ|2dxdt

≤ C
(∫∫
Q

e−4sβ∗|g|2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω

e−4sβ̂−2sβ∗(γ̂)12|χωϕj|2dxdt
)
.

(2.70)
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Proof. We start by an a priori estimate for the Stokes system (2.37). To do this, we introduce
a function ν ∈ C1([0, T ]) such that

ν ≡ 1 in [0, T/2], ν ≡ 0 in [3T/4, T ].

We easily see that (νϕ, νπ) satisfies
−(νϕ)t −∇ · (Dνϕ) +∇(νπ) = νg − ν ′ϕ in Q,
∇ · (νϕ) = 0 in Q,
(νϕ) · n = 0, (σ(νϕ, νπ) · n)tg + (At(x, t)νϕ)tg = 0 on Σ,
(νϕ)(T ) = 0 in Ω.

(2.71)

Using (2.6) we have in particular

‖ϕ‖L2(0,T/2;L2(Ω)N ) + ‖ϕ(·, 0)‖L2(Ω)N

≤ Ce
CT‖A‖2

P0
ε

(
1 + ‖A‖2

P 0
ε

)(
‖g‖L2(0,3T/4;L2(Ω)N ) + ‖ϕ‖L2(T/2,3T/4;L2(Ω)N )

)
.

Taking into account that

e−4sβ∗ ≥ C > 0 ∀t ∈ [0, 3T/4] and e−6sβ∗(γ∗)3 ≥ C > 0, ∀t ∈ [T/2, 3T/4],

we have

T/2∫
0

∫
Ω

e−6sβ∗(γ∗)3|ϕ|2dxdt+ ‖ϕ(·, 0)‖2
L2(Ω)N

≤ Ce
CT‖A‖2

P0
ε

(
1 + ‖A‖2

P 0
ε

)( 3T/4∫
0

∫
Ω

e−4sβ∗|g|2dxdt+

3T/4∫
T/2

∫
Ω

e−6sβ∗(γ∗)3|ϕ|2dxdt
)
.

(2.72)

Note that, since α = β in Ω× (T/2, T ), we have:

T∫
T/2

∫
Ω

e−6sβ∗(γ∗)3|ϕ|2dxdt =

T∫
T/2

∫
Ω

e−6sα∗(ξ∗)3|ϕ|2dxdt

and by virtue of Carleman inequality (2.38) (see Proposition 2.4), we obtain

T∫
T/2

∫
Ω

e−6sβ∗(γ∗)3|ϕ|2dxdt ≤ C
(∫∫
Q

e−4sα∗ |g|2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω′

e−4sα̂−2sα∗(ξ̂)12|ϕj|2dxdt
)
.

Since `(t) = t(T − t) for any t ∈ [T/2, T ] and

e−4sβ∗ ≥ C and e−4sβ̂∗−2sβ∗(γ̂)12 ≥ C in [0, T/2],

we readily get

T∫
T/2

∫
Ω

e−6sβ∗(γ∗)3|ϕ|2dxdt ≤ C
(∫∫
Q

e−4sβ∗|g|2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω

e−4sβ̂−2sβ∗(γ̂)12|χωϕj|2dxdt
)
.

(2.73)
From (2.72) and (2.73) we obtain (2.70).
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Remark 2.4 Observe that on the left-hand side of (2.70) it is possible to add two terms and
obtain

‖e−3sβ∗(γ∗)9/22ϕ‖2
L2(0,T ;H2(Ω)N∩W ) +

∫∫
Q

e−6sβ∗(γ∗)9/11|ϕt|2dxdt

+ ‖ϕ(·, 0)‖2
L2(Ω)N +

∫∫
Q

e−6sβ∗(γ∗)3|ϕ|2dxdt

≤ C
(∫∫
Q

e−4sβ∗|g|2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω

e−4sβ̂−2sβ∗(γ̂)12|χωϕj|2dxdt
)
.

(2.74)

To this end, we consider θ̃ := e−3sβ∗(γ∗)9/22 and (θ̃ϕ, θ̃π) the solution of (2.71) with θ̃ instead
of ν. Next, taking into account that |∂tβ∗| ≤ C(γ∗)12/11, |θ̃′| ≤ Ce−3sβ∗(γ∗)3/2 and the
regularity estimate (2.6), we obtain (2.74).

Now we are ready to prove the null controllability of system (2.68). The idea is to look
for a solution in an appropriate weighted functional space. Let us set

Ly = yt −∇ ·Dy

and let us introduce the space, for N = 2 or N = 3 and i ∈ {1, . . . , N},

Ei
N :={(y, p, v) : e2sβ∗y, e2sβ̂+sβ∗(γ̂)−6v, ρ̃∂tv ∈ L2(Q)N , ρ̃v ∈ L2(0, T ;H2(Ω)N),

vi ≡ 0, supp v ⊂ ω × (0, T ), e2sβ∗(γ∗)−12/11y ∈ Y1, e3sβ∗(γ∗)−3/2(Ly +∇p− vχω) ∈ L2(Q)N},

where

ρ := e−4sβ̂−2sβ∗(γ̂)12 and ρ̃ := ρ−1θ̃.

It is clear that Ei
N is a Banach space for the following norm:

‖(y, p, v)‖Ei
N

=
(
‖e2sβ∗y‖2

L2(Q)N + ‖e2sβ̂+sβ∗(γ̂)−6v‖2
L2(Q)N + ‖ρ̃∂tv‖2

L2(Q)

+ ‖ρ̃v‖2
L2(0,T ;H2(Ω)N ) + ‖e2sβ∗(γ∗)−12/11y‖2

Y1

+ ‖e3sβ∗(γ∗)−3/2(Ly +∇p− vχω)‖2
L2(Q)N

)1/2

.

Remark 2.5 Observe in particular that (y, p, v) ∈ Ei
N implies y(·, T ) = 0 in Ω.

Proposition 2.9 Assume the hypothesis of Lemma 2.8 and

y0 ∈ W and e3sβ∗(γ∗)−3/2h ∈ L2(Q)N . (2.75)

Then, we can find a control v such that the associated solution (y, p) to (2.68) satisfies
(y, p, v) ∈ Ei

N . In particular, vi ≡ 0 and y(·, T ) = 0 in Ω. Furthermore, there exists C > 0
increasing with respect to ‖A‖P 1

ε ∩P 2 such that

‖v‖L2(0,T ;H2(ω)N ) + ‖v‖H1(0,T ;L2(ω)N ) ≤ C
(
‖y0‖H3(Ω)N∩W + ‖h‖L2(Q)N

)
. (2.76)
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Proof. Following the arguments in [FCGIP04], we introduce the space P0 of functions
(ϕ, π) ∈ C2(Q)N+1 such that

(i) ∇ · ϕ = 0 in Q.

(ii) (σ(ϕ, π) · n)tg + (At(x, t)ϕ)tg = 0 on Σ.

(iii) ϕ · n = 0 on Σ.

Also we define the bilinear form

a((ϕ̂, π̂), (w, q)) :=

∫∫
Q

e−4sβ∗(L∗ϕ̂+∇π̂)(L∗w +∇q)dxdt

+
N∑

j=1,j 6=i

T∫
0

∫
ω

e−4sβ̂−2sβ∗(γ̂)12χωϕ̂jχωwjdxdt,

for every (w, q) ∈ P0, and a linear form

〈G, (w, q)〉 :=

∫∫
Q

h · w dxdt+

∫
Ω

y0(·) · w(·, 0) dx, (2.77)

where L∗ is the adjoint operator of L, i.e.,

L∗w = −wt −∇ ·Dw.
Observe that Carleman inequality (2.70) holds for all (w, q) ∈ P0. Consequently,∫∫

Q

e−6sβ∗(γ∗)3|w|2dxdt ≤ Ca((w, q), (w, q)), ∀(w, q) ∈ P0.

Therefore, a(·, ·) : P0 × P0 → R is a symmetric, definite positive bilinear form on P0. We
denote by P the completion of P0 for the norm induced by a(·, ·). Then, a(·, ·) is well-
defined, continuous and again definite positive on P . Furthermore, in view of the Carleman
inequality (2.70) and the assumption (4.16), the linear form (w, q) 7−→ 〈G, (w, q)〉 is well-
defined and continuous on P . Hence, from Lax-Milgram’s Lemma, there exists one and only
one (ϕ̂, π̂) ∈ P satisfying:

a((ϕ̂, π̂), (w, q)) = 〈G, (w, q)〉, ∀(w, q) ∈ P. (2.78)

Let us set {
ŷ = e−4sβ∗(L∗ϕ̂+∇π̂) in Q,

v̂j = −e−4sβ̂−2sβ∗(γ̂)12ϕ̂jχω, j 6= i, v̂i ≡ 0 in ω × (0, T ).
(2.79)

Let us remark that (ŷ, v̂) verifies

a((ϕ̂, π̂), (ϕ̂, π̂)) =

∫∫
Q

e−4sβ∗(L∗ϕ̂+∇π̂)2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω

e−4sβ̂−2sβ∗(γ̂)12|χωϕ̂j|2dxdt

=

∫∫
Q

e4sβ∗|ŷ|2dxdt+
N∑

j=1,j 6=i

T∫
0

∫
ω

e4sβ̂+2sβ∗(γ̂)−12|v̂j|2dxdt < +∞.
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Let us prove that ŷ is, together with some pressure p̂, the weak solution of the Stokes system
in (2.68) for v = v̂. In fact, we introduce the (weak) solution (ỹ, p̃) to the Stokes system:

Lỹ +∇p̃ = h+ v̂χω in Q,
∇ · ỹ = 0 in Q,
ỹ · n = 0, (σ(ỹ, p̃) · n)tg + (A(x, t)ỹ)tg = 0 on Σ,
ỹ(·, 0) = y0(·) in Ω.

(2.80)

Clearly, ỹ is the unique solution of (2.80) defined by transposition. This means that ỹ is the
unique function in L2(Q)N satisfying∫∫

Q

ỹ ·g dxdt =

∫
Ω

y0(·)·w(·, 0)dx+

∫∫
Q

h·w dxdt+

∫∫
Q

v̂ ·wχω dxdt, ∀g ∈ L2(Q)N , (2.81)

where w is, together with a pressure q, the solution to
L∗w +∇q = g in Q,
∇ · w = 0 in Q,
w · n = 0, (σ(w, q) · n)tg + (At(x, t)w)tg = 0 on Σ,
w(·, T ) = 0 in Ω.

From (2.78) and (2.79), we see that ŷ also satisfies (2.81). Consequently, ŷ = ỹ and ŷ is,
together with p̂ = p̃, the weak solution to the Stokes system (2.80).
Finally, we must see that (ŷ, p̂, v̂) ∈ Ei

N . We already know that

e2sβ∗ ŷ, e2sβ̂+sβ∗(γ̂)−6v̂ ∈ L2(Q)N

and (see (4.16))
e3sβ∗(γ∗)−3/2(Lŷ +∇p̂− v̂χω) ∈ L2(Q)N .

Thus, it only remains to check that

e2sβ∗(γ∗)−12/11ŷ ∈ Y1 and ρ̃v̂ ∈ L2(0, T ;H2(ω)N) ∩H1(0, T ;L2(ω)N).

i) We define the functions

y∗ := e2sβ∗(γ∗)−12/11ŷ, p∗ := e2sβ∗(γ∗)−12/11p̂

and
h∗ := e2sβ∗(γ∗)−12/11(h+ v̂χω).

Then (y∗, p∗) satisfies:
Ly∗ +∇p∗ = h∗ + (e2sβ∗(γ∗)−12/11)′ŷ in Q,
∇ · y∗ = 0 in Q,
y∗ · n = 0, (σ(y∗, p∗) · n)tg + (A(x, t)y∗)tg = 0 on Σ,
y∗(·, 0) = e2sβ∗(0)(γ∗(0))−12/11y0(·) in Ω.

Since h∗ + (e2sβ∗(γ∗)−12/11)′ŷ ∈ L2(Q)N and y0 ∈ W , we have y∗ ∈ Y1 (see Lemma 2.2
in Section 2).
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ii) Now, let us bound the H1(0, T ;L2(ω)N) and the L2(0, T ;H2(ω)N) norms of the control.
Using (2.79), we obtain

N∑
j=1,j 6=i

T∫
0

ρ̃2(‖∂tv̂j‖2
L2(ω) + ‖v̂j‖2

H2(ω))dxdt

≤ C

N∑
j=1,j 6=i

(∫∫
Q

e−6sβ∗(γ∗)3|ϕ̂j|2dxdt+

∫∫
Q

θ̃2|∂tϕ̂j|2dxdt+ ‖θ̃ϕ̂j‖2
L2(0,T ;H2(Ω))

)
.

Taking into account that (2.70) and Remark 2.4 hold for all (ϕ̂, π̂) ∈ P0, we readily
obtain

N∑
j=1,j 6=i

T∫
0

ρ̃2(‖∂tv̂j‖2
L2(ω) + ‖v̂j‖2

H2(ω))dxdt ≤ Ca((ϕ̂, π̂), (ϕ̂, π̂)). (2.82)

Finally, from the continuity of G (see (2.77)) and (2.78), we deduce (2.76). This ends the
proof of Proposition 2.9.

2.5 Proof of the main result

In this section we give the proof of Theorem 2.1 using classical arguments. The first step
is to apply Kakutani’s fixed point theorem on the boundary. Finally, we will deal with
the nonlinear term in the Navier-Stokes equations through an inverse mapping theorem to
conclude the proof of Theorem 2.1.

2.5.1 Nonlinearity on the boundary conditions.

In this section we present the local null controllability for the following system:
yt −∇ · (Dy) +∇p = h+ vχω in Q,
∇ · y = 0 in Q,
y · n = 0, (σ(y, p) · n)tg + (f(y))tg = 0 on Σ,
y(·, 0) = y0(·) in Ω.

(2.83)

Theorem 2.10 Let us assume that f ∈ C4(RN ;RN) and f(0) = 0. Then, for every T > 0,
ω ⊂ Ω and i ∈ {1, . . . , N}, there exists δ > 0 such that, for every y0 ∈ H3(Ω)N ∩W , h ∈ Y1

satisfying e3sβ∗(γ∗)−3/2h ∈ L2(Q)N ,

‖h‖Y1 + ‖y0‖H3(Ω)N∩W ≤ δ (2.84)

and the compatibility condition (2.2), we can find a control

v ∈ L2(0, T ;H2(ω)N) ∩H1(0, T ;L2(ω)N)

and an associated solution (y, p) of (2.83) satisfying y ∈ Y2 and such that (y, p, v) ∈ Ei
N .
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Proof. For every z ∈ Zε (recall that Zε was defined in (2.4)) we consider the following
system: 

yt −∇ · (Dy) +∇p = h+ vχω in Q,
∇ · y = 0 in Q,
y · n = 0, (σ(y, p) · n)tg + (g(z)y)tg = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(2.85)

where

g(z) :=
1

N

1∫
0

∇f(τz)dτ.

On the other hand, observe that since f ∈ C4(RN ;RN), each row and each column of g(z)
belongs to Zε. Then, for every z ∈ Zε we can use Proposition 2.9 with A = g(z) and deduce
the existence of a control vz belonging to L2(0, T ;H2(ω)N)∩H1(0, T ;L2(ω)N) such that the
solution (yz, pz) of (2.85) satisfies (yz, pz, vz) ∈ Ei

N .
Moreover, from (2.76) we have

‖vz‖L2(0,T ;H2(ω)N ) + ‖vz‖H1(0,T ;L2(ω)N ) ≤ C1(Ω, ω, T, ‖g(z)‖P 1
ε ∩P 2)

(
‖y0‖H3(Ω)N∩W + ‖h‖L2(Q)N

)
,

(2.86)
where C1 is increasing with respect to ‖g(z)‖P 1

ε ∩P 2 .

Next, taking into account that vz, h ∈ Y1 and the compatibility condition (2.7) with u0

replaced by y0, A(·, 0) replaced by g(y0(·)) and f2(·, 0) replaced by 0 (see (2.2)), we can apply
Theorem 2.3 to system (2.85). Combining this with (2.86), we can obtain that yz ∈ Y2 and

‖yz‖Y2 ≤ C2(Ω, ω, T, ‖g(z)‖P 1
ε ∩P 2)

(
‖y0‖H3(Ω)N∩W + ‖h‖Y1

)
, (2.87)

with C2 increasing with respect to ‖g(z)‖P 1
ε ∩P 2 (see (2.10)).

Let C(z) be the set constituted by the controls vz ∈ L2(0, T ;H2(ω)N) ∩H1(0, T ;L2(ω)N)
that satisfy (2.86) and drive the solution yz of system (2.85) to zero at time T . Then, let us
introduce

Λ(z) := {yz solution of (2.85) : vz ∈ C(z)}.
Observe that, thanks to (2.87), Λ(z) is included in Y2. Moreover, for any z ∈ Y2 such that
‖z‖Y2 ≤ 1, we have ‖g(z)‖P 1

ε ∩P 2 ≤ M , where M > 0 is a constant only depending on ε, T
and Ω. Consequently,

‖yz‖Y2 ≤ C2(Ω, ω, T,M)
(
‖y0‖H3(Ω)N∩W + ‖h‖Y1

)
(see (2.87)). Choosing now δ :=

1

C2(Ω, ω, T,M)
in (2.84), we find ‖yz‖Y2 ≤ 1.

Now, we want to establish that the set-valued map Λ : K → 2K possesses a fixed-point,
where

K := BY2(0; 1) = {y ∈ Y2 : ‖y‖Y2 ≤ 1}.
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For this end, we will apply Kakutani’s fixed-point theorem (see for instance [AF09], Theorem
3.2.3, page 87):

i) Λ(z) is a nonempty closed convex set of L2(Q)N , for every z ∈ K.

ii) K is a nonempty convex compact set of L2(Q)N .

iii) Λ is upper-hemicontinuous in L2(Q)N , i.e, for any λ ∈ L2(Q)N , the mapping

z → sup
y∈Λ(z)

〈λ, y〉L2(Q)N

is upper semicontinuous.

i) For every z ∈ K, let (ykz ) ⊂ C(z) such that ykz → yz in L2(Q)N . From (2.86), we find
(at least for a subsequence) that vk

′
z → vz in L2(Q)N . Let us denote wz the solution of

(2.85) associated to v := vz. Then, yk
′
z − wz satisfies (2.85) with h := 0, v := vk

′
z − vz

and y0 := 0. Thanks to (2.6), we have yk
′
z → wz in L2(Q)N in particular and so yz = wz.

This shows that Λ(z) is closed. The convexity of Λ(z) is trivial.

ii) Since Y2 is compactly embedeed into L2(Q)N , the second item holds true.

iii) Finally, let us prove the upper-hemicontinuity of Λ. Assume zk → z in L2(Q)N . In
consequence from the compactness of Λ(zk), we have

sup
y∈Λ(zk)

〈λ, y〉L2(Q)N = 〈λ, yk〉L2(Q)N ,

for some yk ∈ Λ(zk). Then, we choose (zk′) ⊂ (zk) such that

lim
k′→∞

sup
y∈Λ(zk′ )

〈λ, y〉L2(Q)N = lim
k′→∞

〈λ, yk′〉L2(Q)N

and denote vk′ the controls in C(zk′) which are associated to yk′ ∈ Λ(zk′). From
(2.86), there exists v∗ ∈ L2(0, T ;H2(ω)N) ∩ H1(0, T ;L2(ω)N) such that vk′ ⇀ v∗ in
L2(0, T ;H2(ω)N) ∩H1(0, T ;L2(ω)N) and v∗ ∈ C(z). In particular, vk′ → v∗ in L2(Q)N

(for a subsequence). Now, let (y∗, p∗) be the solution to (2.85) associated to v∗. We set
ỹk′ := yk′ − y∗, p̃k′ := pk′ − p∗ and ṽk′ := vk′ − v∗. Then,

(ỹk′)t −∇ · (Dỹk′) +∇p̃k′ = ṽk′χω in Q,
∇ · ỹk′ = 0 in Q,
ỹk′ · n = 0, (σ(ỹk′ , p̃k′) · n)tg + (g(z)ỹk′)tg = ([g(z)− g(zk′)]yk′)tg on Σ,
ỹk′(·, 0) = 0 in Ω.

Taking into account that g(zk′)→ g(z) in Zε, one can prove that in particular

‖[g(z)− g(zk′)]yk′‖L2(0,T ;H1/2(∂Ω)N )∩H1/4+ε(0,T ;H−ε(∂Ω)N )
k′→∞−−−→ 0.

Then, from Lemma 2.2 we can deduce that yk′ → y∗ in Y1. Additionally, y∗ ∈ Λ(z) and
therefore,

lim
k′→∞

sup
y∈Λ(zk′ )

〈λ, y〉L2(Q)N = lim
k′→∞

〈λ, yk′〉L2(Q)N = 〈λ, y∗〉L2(Q)N ≤ sup
y∈Λ(z)

〈λ, y〉.

This concludes the proof of Theorem 2.10.
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2.5.2 Nonlinearity in the main equation.

Theorem 2.11 Suppose that B1,B2 are Banach spaces and

A : B1 → B2

is a continuously differentiable map. We assume that for b0
1 ∈ B1, b

0
2 ∈ B2 the equality

A(b0
1) = b0

2 (2.88)

holds and A′(b0
1) : B1 → B2 is an epimorphism. Then there exists δ > 0 such that for any

b2 ∈ B2 which satisfies the condition

‖b0
2 − b2‖B2 < δ

there exists a solution b1 ∈ B1 of the equation

A(b1) = b2.

We apply this theorem for some given i ∈ {1, . . . , N} and the spaces

B1 := {(y, p, v) ∈ Ei
N : y ∈ Y2}

and

B2 := {(h, y0) ∈ [L2(e3sβ∗(γ∗)−3/2(0, T );L2(Ω)N)∩Y1]× [H3(Ω)N ∩W ] : h, y0 satisfies (2.84)}

We define the operator A by the formula

A(y, p, v) = (Ly + (y · ∇)y +∇p− vχω, y(·, 0)).

Let us see that A is of class C1(B1,B2). Indeed, notice that all the terms in A are linear,
except for (y · ∇)y. We prove now that the bilinear operator

((y1, p1, v1), (y2, p2, v2)) 7−→ (y1 · ∇)y2

is continuous from B1 × B1 to L2(e3sβ∗(γ∗)−3/2(0, T );L2(Ω)N) ∩ Y1.
In fact, notice that (see the definition of the space Ei

N):

e2sβ∗(γ∗)−12/11y ∈ L2(0, T ;L∞(Ω)N)

and
∇(e2sβ∗(γ∗)−12/11y) ∈ L∞(0, T ;L2(Ω)N×N).

Consequently, we obtain

‖e3sβ∗(γ∗)−3/2(y1 · ∇)y2‖L2(Q)N

≤ C‖(e2sβ∗(γ∗)−12/11y1 · ∇)e2sβ∗(γ∗)−12/11y2‖L2(Q)N

≤ C‖e2sβ∗(γ∗)−12/11y1‖L2(0,T ;L∞(Ω)N )‖e2sβ∗(γ∗)−12/11y2‖L∞(0,T ;W ).
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On the other hand,
‖(y1 · ∇)y2‖Y1 ≤ C‖y1‖Y2‖y2‖Y2 .

Notice that A′(0, 0, 0) : B1 → B2 is given by

A′(0, 0, 0)(y, p, v) = (Ly +∇p− vχω, y(·, 0)), for all (y, p, v) ∈ B1.

In virtue of Theorem 2.10, this functional satisfies Im(A′(0, 0, 0)) = B2.
Let b0

1 = (0, 0, 0) and b0
2 = (0, 0). Then equation (2.88) obviously holds. So all necessary

conditions to apply Theorem 2.11 are fulfilled. Therefore there exists a positive number δ
such that, if ‖y(·, 0)‖H3(Ω)N∩W ≤ δ, we can find a control v satisfying vi ≡ 0, for some given
i ∈ {1, . . . , N} and an associated solution (y, p) to (2.1) satisfying y(·, T ) = 0 in Ω. This
finishes the proof of Theorem 2.1.
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Chapter 3

First inverse source problem for the
Stokes system

3.1 Introduction

We consider the inverse problem of determining the spatial dependence of a source in the
Stokes system of the form f(x)σ(t) defined in Ω × (0, T ), assuming that σ(t) is known and
f(x) is divergence free. The only available observations are single internal measurements of
the velocity, in which one of its components is missing. Under some hypothesis on σ we prove
uniqueness of this inverse problem via some explicit reconstruction formula. This formula
provides the spectral coefficients fk of the source f in terms of a family of null controls h(τ)

for the corresponding dual system indexed by τ ∈ (0, T ]. Let Ω be a nonempty bounded
connected open subset of RN (N = 2 or N = 3) with smooth boundary Γ. Let T > 0 and
let ω ⊂ Ω be an arbitrary nonempty subdomain. Given an initial data y0, we consider the
following Stokes system:

yt − ν∆y +∇p = F (x, t) in Ω× (0, T ),
∇ · y = 0 in Ω× (0, T ),
y = 0 on Γ× (0, T ),
y(·, 0) = y0 in Ω,

(3.1)

where F (x, t) = f(x)σ(t) represents the source term or density of external forces causing
the movement of the fluid and ν > 0 is the diffusion coefficient. Let us now introduce usual
spaces in the context of problems modeling incompressible fluids:

V := {y ∈ H1
0 (Ω)N : ∇ · y = 0 in Ω}

and

H := {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on Γ},

where n(x) is the outward unit normal vector to Ω at the point x ∈ Γ.
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It is well known that if F ∈ L2(0, T ;H) and y0 ∈ V , then there exists a unique solution
(y, p) for the system (3.1) such that y ∈ L2(0, T ; (H2(Ω)∩H1

0 (Ω))N)∩H1(0, T ;L2(Ω)N) and
p ∈ H1(0, T ;L2(Ω)).

Our aim is to establish a reconstruction formula for the following inverse problem: deter-
mining the source f(x) in the system (3.1) from local and missing velocity data. That is to
say, from N − 1 scalar components of the velocity field y and its time derivative yt in some
strict subset or observatory ω ⊂ Ω measured during a time interval (0, T ).

Inverse problems of this type for the Stokes or Navier-Stokes system have been not stud-
ied intensively. The closest-related results can be found in [CIPY13], [IY00] and [Mar15].
In [CIPY13], the authors proved the Lipschitz stability of recovering the spatially part of
a source term for the linearized Navier-Stokes equations with data y|ω1×(0,T ), y|{θ}×Ω where
ω1 ⊂ Ω is an arbitrary subdomain and 0 < θ < T . In this case, the density of external force
is F = R(x, t)g(x), where R(x, t) is a vector-valued function known and g(x) is unknown.
On the other hand, in [IY00] the authors considered the same external force as in this work
F = f(x)σ(t), but they focus on recovering f from data y|ω2×(0,T ), p|ω2×(0,T ), y|{θ}×Ω, p|{θ}×Ω,
where ω2 is an arbitrary subdomain and 0 < θ < T . In all these studies, the arguments are
based on the general Bukhgeim-Klibanov method to obtain stability based on global Carle-
man estimates [Kli81]. We also refer to the more recent work [Mar15], where the authors
use spectral analysis on unsteady Stokes/Brinkman system in order to prove identification
results for (F, g), where F is the external source and g = ∇ · y is the compressible source
term. In this article, the identification is obtained from one or several spectral measurement
of the normal component of the stress tensor on the whole boundary.

There exists a complete different approach to this problem based on the relationship
between null-controllability and inverse problems. This method was firstly developed for
hyperbolic equations in [Yam95] and then extended to parabolic equations in [GOT13]. The
advantage of this methods is that they provide an explicit recovery formula for the source
f(x) in terms of local measurements and null-controls. The main difference between the
hyperbolic and the parabolic case is that in the first case just one type of null-controls are
required (controlling from T to 0) meanwhile, in the second case a family of null-controls
appears (controlling from τ to 0 for τ ∈ (0, T ].

Also using the connection between null controllability and several inverse problems, in
[GT11], the authors study the conditional logarithmic stability for the source inverse prob-
lem for a wide class of parabolic equations for regular enough sources and from internal or
boundary measurements. The results are then extended to the Stokes system.

Our main results, Theorem 3.4 and Theorem 3.5, provide a reconstruction formula of each
Fourier coefficient of f by means of N − 1 components of local measurements of the solution
y of system (3.1). The main ideas for obtaining this formula have been taken from [GOT13].
However, the full adaptation to the Stokes system (3.1) has the following new challenges:
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• We will able to recover only the divergence-free part of the source f from the local (in
space) velocity, but without measuring the pressure. This makes a difference with the
previous works [IY00] and [CIPY13].

• Instead of using the classical null-controllability results for the Stokes system (see for
instance [FI96b], [FCGBGP06]), we have to consider [CG09], where the authors obtain
the null-controllability for the N -dimensional Stokes system with N − 1 scalar controls
through Carleman inequalities. This fact allow us, by duality, to consider local mea-
surements of the velocity with one missing component for the reconstruction. Under
our knowledge, this is a completely new application of the global Carleman inequalities
with missing components of this type.

• Numerically, in order to approximate a null-control with one vanishing component, it
is necessary to introduce two regularizing parameters α > 0 and β > 0. The first
one is classical (see for instance [GLH08], [Lio71]) and it serves to penalize the exact
null final condition. The other parameter is new and it is added in order to penalize
the vanishing component. This generalize the case considered in [GOT13] to missing
components in the multidimensional case.

This chapter is organized as follows. In Section 3.2 we first prove the uniqueness and
reconstruction results, Theorem 3.4 and Theorem 3.5. Next, in Section 3.3 we give a method
to approximate null controls with one vanishing component and prove its convergence. Fi-
nally, in Section 3.4 we implement this method and present several numerical experiments
that show the feasibility of the proposed recovering formula.

Before starting with Section 3.2, we recall some preliminary lemmas concerning the null
controllability of Stokes system using null controls with one vanishing component.
The following Theorem was proved in [CG09] and establishes the null controllability for the
N -dimensional Stokes system with one vanishing in the control using Carleman inequalities.

Lemma 3.1 Given τ ∈ (0, T ], ω ⊂ Ω with nonempty interior and ϕ0 ∈ H, there exists a

control h(τ) = h(τ)(ϕ0) ∈ L2(0, τ ;L2(Ω)N) with h
(τ)
j ≡ 0 for some j ∈ {1, · · · , N}, such that

the solution φ of the problem


−φt − ν∆φ+∇π = h(τ)1ω×[0,τ ] in Ω× (0, τ),
∇ · φ = 0 in Ω× (0, τ),
φ = 0 on Γ× (0, τ),
φ(·, τ) = ϕ0 in Ω,

(3.2)

satisfies

φ(·, 0) = 0 in Ω. (3.3)

Moreover, there exist constants C0 > 0 and C1 > 0 depending only on Ω and ω such that

‖h(τ)‖L2(0,T ;L2(ω)N ) ≤ C0eC1/τ9‖ϕ0‖L2(Ω)N . (3.4)
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Remark 3.1 The proof of Lemma 3.1 is equivalent to the following observability inequality:

‖w(τ)‖2
L(Ω) ≤ C0eC1/τ9

N∑
i=1 ,i6=j

τ∫
0

∫
ω

|wi|2dxdt, (3.5)

where (w, q) is the solution of the adjoint system
wt − ν∆w +∇q = 0 in Ω× (0, τ),
∇ · w = 0 in Ω× (0, τ),
w = 0 on Γ× (0, τ),
w(·, 0) given in Ω.

(3.6)

Finally, we recall technical results about the Volterra equations of first and second kind
we need afterwards. For more details, the interested reader can see [GOT13], [Tri57] and
[Yam95].

Lemma 3.2 For 0 < t < τ < T and every η ∈ L2(0, τ ;L2(Ω)N), there exists a unique

θ ∈ H1(0, τ ;L2(Ω)N)

satisfying for every i ∈ {1, . . . , N} the Volterra equation of the second kind

σ(0)∂tθi(x, t) +

τ∫
t

(σ(s− t)θi(x, s) + σ′(s− t)∂tθi(x, s))ds = ηi(x, t),

θi(x, τ) = 0.

(3.7)

Furthermore, there exists a constant C > 0 depending on ‖σ‖W 1,∞(0,τ) such that

‖θ‖H1(0,τ ;L2(Ω)N ) ≤ C‖η‖L2(0,τ ;L2(Ω)N ). (3.8)

Lemma 3.3 We define the operators K : L2(0, T ;L2(Ω)N) → H1(0, T ;L2(Ω)N) and L :
L2(0, T ;H1(Ω))→ L2(0, T ;H1(Ω)) by

(Kv)(x, t) :=

t∫
0

σ(s)v(x, t− s)ds, (Lq)(x, t) :=

t∫
0

σ(s)q(x, t− s)ds. (3.9)

There exists a positive constant C depending only on Ω, T and ‖σ‖W 1,∞(0,T ) such that

C‖Kv‖H1(0,T ;L2(Ω)N ) ≤ ‖v‖L2(Q)N ≤ ‖Kv‖H1(0,T ;L2(Ω)N ). (3.10)

C‖Lq‖L2(0,T ;H1(Ω)) ≤ ‖q‖L2(Q)N ≤ ‖Lq‖L2(0,T ;H1(Ω)N ).

Furthermore, the adjoint operator K∗ : H1(0, T ;L2(Ω)N)→ L2(0, T ;L2(Ω)N) is given by

(K∗θ)(x, t) = σ(0)∂tθ(x, t) +

T∫
t

(σ(s− t)θ(x, s) + σ′(s− t)∂tθ(x, t))ds. (3.11)
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3.2 Uniqueness and reconstruction with one missing

component

We now address the uniqueness and the reconstruction of the inverse source problem for the
Stokes system (3.1) following the same ideas of [GOT13]. The main differences here are on
one side that we are in presence of a systems of N equations and we have to project into
the H space in order to eliminate the pressure. On the other side, we observe the velocity
with one missing component, so we should use by duality null-controls with one vanishing
component.

Our first result is given in the following theorem (analogous to Theorem 1.3 in [GOT13]).

Theorem 3.4 Let σ ∈ W 1,∞(0, T ) with σ(T ) 6= 0. Given ϕ0 ∈ H, for each 0 < τ ≤ T , let

h(τ) = (h
(τ)
j )Nj=1 be a null control associated to problem (3.2) extended by zero in (τ, T ] with

h
(τ)
j ≡ 0 for some j ∈ {1, · · · , N}. Let θ(τ) be a solution of (3.7) for η = h(τ) extended by

zero in (τ, T ]. Then

(f, ϕ0)L2(Ω)N = L+ C1 + C2,

where

L(ϕ0) = − ν

σ(T )
(∆y(·, T ), ϕ0)L2(Ω)N ,

C1 = − σ(0)

σ(T )

N∑
i=1 ,i 6=j

(yi, θ
(T )
i )H1(0,T ;L2(ω)),

C2 = − 1

σ(T )

N∑
i=1 ,i 6=j

T∫
0

σ′(T − s)(yi, θ
(τ)
i )H1(0,T ;L2(ω))ds.

(3.12)

Moreover, if σ′(t) = 0 for t ∈ (T − ε, T ] for some ε > 0 or σ′(t) = e−C/(T−t)
9
ρ(t) for all

t ∈ (0, T ), ρ ∈ L∞(0, T ) for large C, then we obtain the stability inequality

‖f‖L2(Ω)N ≤ C
(
‖∆y(·, T )‖L2(Ω)N +

N∑
i=1 ,i6=j

‖yi‖H1(0,T ;L2(ω))

)
(3.13)

with C ∼ O(eC1/ε9) and C1 is the constant appearing in (3.4).

Remark 3.2 Notice that the reconstruction formula (3.12) involves a system of equations
and one missing component of the velocity in the observatory ω × (0, T ) since we consider
a family of exact controls h(τ) having one vanishing component. This is the main difference
with the reconstruction formula presented in [GOT13] for scalar parabolic equations.

Proof of Theorem 3.4. Using the operators K and L defined in Lemma 3.3 it is easy to see that
if (w, q) satisfies (3.6) with initial condition w(0) = f then y = Kw and p = Lq satisfy (3.1).

Evaluating the main equation (3.1) in T , using that yt(T ) = σ(0)w(T )+
T∫
0

σ′(T−s)w(x, s)ds,
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after multiplying by ϕ0 ∈ H and integrating in space, we easily deduce that

σ(T )(f, ϕ0)L2(Ω)N = σ(0)(w(·, T ), ϕ0)L2(Ω)N − ν(∆y(·, T ), ϕ0)L2(Ω)N

+

T∫
0

σ′(T − s)(w(·, s), ϕ0)L2(Ω)Nds
(3.14)

since
(∇p(·, T ), ϕ0)L2(Ω)N = 0.

Next, observe that for all τ ∈ (0, T ], the term (w(·, τ), ϕ0)L2(Ω)N can be evaluated by mul-
tiplying the principal equation in (3.6) by φ solution of the control system (3.2), and after
using integration by parts in the domain Ω × (0, τ). Then, if h(τ) is extended by zero for
τ < t < T we have

(w(·, τ), ϕ0)L2(Ω)N = −
N∑

i=1,i6=j

T∫
0

∫
ω

wi(x, t)h
(τ)
i (x, t)dxdt. (3.15)

On the other hand, from (3.7) and (3.11) we can consider the Volterra equations: K∗(θ
(τ)
i ) =

h
(τ)
i , i ∈ {1, . . . , N}, i 6= j, where θ

(τ)
i (t) = 0 for τ ≤ t ≤ T . Then, by solving these problems

and using y = Kw we obtain

(w(·, τ), ϕ0)L2(Ω)N = −
N∑

i=1,i 6=j

(wi, K
∗θ

(τ)
i )L2(0,T ;L2(ω)) = −

N∑
i=1,i6=j

(yi, θ
(τ)
i )H1(0,T ;L2(ω)).

Hence, applying the above identity in (3.14) for every ϕ0 ∈ H, we have

(f, ϕ0)L2(Ω)N = − σ(0)

σ(T )

N∑
i=1,i 6=j

(yi, θ
(T )
i )H1(0,T ;L2(ω)) −

ν

σ(T )
(∆y(·, T ), ϕ0)L2(Ω)N

− 1

σ(T )

N∑
i=1,i 6=j

T∫
0

σ′(T − s)(yi, θ
(τ)
i )H1(0,T ;L2(ω))ds.

(3.16)

The stability result (3.13) is deduced following the same proof as in [GOT13] Theorem 1.3,
from (3.4) and (3.8) since

‖θ(τ)‖H1(0,τ ;L2(Ω)N ) ≤ C‖h(τ)‖L2(0,τ ;L2(Ω)N ) ≤ CeC1/τ9‖ϕ0‖L2(Ω)N .

This concludes the proof of Theorem 3.4.

As in [GOT13], notice that the information of ∆y(·, T ) in Ω is not available in many
applications, in fact, we will see that f can be recovered only from information of ∆y(·, T ),
so formula (3.12) is useless. If we only have access to the measurements in the observatory
ω × (0, T ), we can deduce the reconstruction formula of Theorem 3.5.

Our second result is the following (analogous to Theorem 1.6 in [GOT13]).

60



Theorem 3.5 Let f ∈ L2(Ω)N and let {(λk, ϕk)}k≥0 be the eigenvalues and (L2)N -orthonormal
eigenvectors of the Stokes operator in Ω with homogeneous Dirichlet boundary conditions.
Given σ ∈ W 1,∞(0, T ), σ(T ) 6= 0, such that

ak := 1− νλk
σ(T )

∫ T

0

e−νλk(T−s)σ(s)ds 6= 0, (3.17)

for some k ≥ 0, then we have the local reconstruction formula

PHfk = a−1
k (C1k + C2k), (3.18)

where PH represents the orthogonal projector from L2(Ω)N onto H and C1k = C1(ϕk), C2k =
C2(ϕk) were defined in Theorem 3.4, which only depend on the local observations of N − 1
components of the solution of (3.1).

Proof of Theorem 3.5. To prove the Theorem 3.5 we introduce the eigenvalues and eigenvec-
tors (λk, ϕk)k∈N of the Stokes operator in Ω as follows:

−∆ϕk +∇πk = λkϕk in Ω,
∇ · ϕk = 0 in Ω,

ϕk = 0 on Γ,
(3.19)

and we choose ϕk orthonormal in L2(Ω)N such that the solution u of (3.1) admitted the
representation

yi(x, t) =
∑
k∈N

αk(t)ϕik(x), ∀ i = 1, . . . , N.

On the other hand, from (3.1) and (3.19) it is easy to check that the coefficients αk(t) are
given by

αk(t) = fk

t∫
0

e−νλk(t−s)σ(s)ds, (3.20)

where fk = (f, ϕk)L2(Ω)N are the unknown coefficients of the source term f , which satisfies
the divergence free condition.
Additionally, by integration by parts and using (3.19) and (3.20) we obtain∫

Ω

∆y(x, T ) · ϕk(x)dx = −λk(y(·, T ), ϕk)L2(Ω)N = −λkαk(T ). (3.21)

Then, from (3.16), (3.20) and (3.21) we get

(PHf, ϕk)L2(Ω)N := fk = −a−1
k

(
σ(0)σ(T )−1

N∑
i=1,i6=j

(yi, θ
(T )
i,k )H1(0,T ;L2(ω))

+σ(T )−1

N∑
i=1,i6=j

T∫
0

σ′(T − s)(yi, θ
(s)
i,k )H1(0,T ;L2(ω))ds

)
,

where ak was defined in (3.17). Thus the proof of Theorem 3.5 is complete.
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Remark 3.3 In Theorem 3.5, the reconstruction formula (3.18) is valid if the coefficient ak
defined by (3.17) is not zero. This is true for every k ∈ N in the following particular cases
of time dependency σ of the source (see [GOT13]):

a) σ := σ0 constant.

b) σ := σ1(t) a non-negative and increasing function.

c) σ := σ2(t) = 1 + 1
2

cos
(

4πt
T−ε

)
for t < T − ε and σ2 = 3

2
for t > T − ε.

Notice that Theorem 3.5 can be extended to the case in which a linear term d(t)y(x, t) is
added to the main equation in (3.1), with d ∈ W 1,∞(0, T ), so, the new system will be given
by: 

yt − ν∆y + d(t)y +∇p = f(x)σ(t) in Ω× (0, T ),
∇ · y = 0 in Ω× (0, T ),
y = 0 on Γ× (0, T ),
y(·, 0) = y0 in Ω,

In fact, it is known that the observability inequality (3.5) is valid in the presence of this
linear term in the controlled system (3.2) and the corresponding adjoint system (3.6). Thus,
using the same scheme of the proof of Theorem 3.5, it is easy to obtain for the above system
the following Corollary.

Corolary 3.6 Under the hypothesis of Theorem 3.5 and d ∈ W 1,∞(0, T ), if

ak := 1− νλk
σ(T )

T∫
0

e
−νλk(T−s)+

T∫
s

d(y)dy
σ(s)ds 6= 0,

for some k ≥ 0, then we have the local reconstruction formula

PHfk = a−1
k (C1k + C2k + C3k),

where PH represents the orthogonal projector in L2(Ω)N onto H, C1k = C1(ϕk), C2k = C2(ϕk)
were defined in Theorem 3.4 and

C3k := −d(T )

σ(T )

N∑
i=1,i 6=j

T∫
0

σ(T − s)(yi, θ
(τ)
i,k )H1(0,T ;L2(ω))ds.

3.3 Convergence of two-parametric optimal controls

to null controls with one vanishing component

We also study the null controllability problem mentioned in Lemma3.1 through a sequence
of optimal control problems, by introducing relaxation parameters α > 0 and β > 0. Then,
for every τ ∈ (0, T ], let us first characterize the control of minimal norm in L2(0, τ ;L2(Ω)N)
by an optimal system. For ϕ0 ∈ H fixed, we consider the cost functional Jα,β defined by

Jα,β(h) :=
1

2

N∑
i=1,i 6=j

τ∫
0

∫
ω

|hi|2dxdt+ β

τ∫
0

∫
ω

|hj|2dxdt+
1

2α
‖φ(·, 0)‖2

L2(Ω)N ,
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where α and β are arbitrary positive numbers, which are associated respectively to the exact
final condition φ(·, 0) = 0 (with φ the solution of (3.2)) and the internal control with null
j-th component. Next, we consider the following optimal control problem:

min
h∈L2(0,τ ;L2(ω)N )

Jα,β(h). (3.22)

In [GOT13], the authors proved a similar result of optimal control for scalar parabolic
equations. The novelty here is the additional parameter β.

Theorem 3.7 The following statements hold:

(i) For every α > 0 and for every β > 0 there exists a unique solution h = h(α, β) to
(3.22) where h is characterized by the following optimality system:

−∂tφ− ν∆φ+∇π = h(τ)1ω×[0,τ ] in Ω× (0, τ),
∇ · φ = 0 in Ω× (0, τ),
φ = 0 on Γ× (0, τ),
φ(·, τ) = ϕ0 in Ω,

(3.23)

and 
∂tw − ν∆w +∇q = 0 in Ω× (0, τ),
∇ · w = 0 in Ω× (0, τ),
w = 0 on Γ× (0, τ),

w(·, 0) =
1

α
φ(·, 0) in Ω,

(3.24)

with
h

(τ)
i + wi = 0 in ω × (0, τ), ∀i = 1, . . . , N, i 6= j,

βh
(τ)
j + wj = 0 in ω × (0, τ).

(3.25)

(ii) When β tends to infinity and α tends to zero, we have
− ν

σ(T )
(∆y(·, T ), ϕ0)L2(Ω)N −

σ(0)

σ(T )

N∑
i=1,i6=j

(yi, θ
(T )
i )H1(0,T ;L2(ω))

− 1

σ(T )

N∑
i=1,i 6=j

T∫
0

σ′(T − s)(yi, θ
(τ)
i )H1(0,T ;L2(ω))ds.


→ (f, ϕ0)L2(Ω)N ,

where θ
(τ)
i is the solution of h

(τ)
i = K∗θ

(τ)
i .

Proof of Theorem 3.7. The arguments are essentially based in [GOT13], [GLH08] and [Lio71],
after considering the following differences:

(i) This item is checked from [Lio71]. Therefore the problem (3.22) has a unique solution
h(τ), which satisfies the optimality system (3.23)-(3.25).

(ii) From (3.23)-(3.25), it is easy to verify the identity:
τ∫

0

∫
ω

(
N∑

i=1,i 6=j

|h(τ)
i |2 + β|h(τ)

j |2
)

dxdt+
1

α
‖φ(·, 0)‖2

L2(Ω)N︸ ︷︷ ︸
I2

= (w(·, τ), ϕ0)L2(Ω)N . (3.26)
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Applying Young’s inequality on the right-hand side of (3.26) and combining this with the
observability inequality (3.5) we obtain

I2 ≤
a2

2
C0eC1/τ9

N∑
i=1,i 6=j

τ∫
0

∫
ω

|wi|2 dx dt+
1

2a2
‖ϕ0‖2

L2(Ω)N , a > 0.

Choosing a2 = C−1
0 e−C1/τ9 and using the optimal condition wi = −hi, ∀i = 1, . . . , N, i 6= j,

we can deduce that

τ∫
0

∫
ω

(
N∑

i=1,i 6=j

|h(τ)
i |2 + 2β|h(τ)

j |2
)

dxdt+
2

α
‖φ(·, 0)‖2

L2(Ω)N ≤ C0eC1/τ9‖ϕ0‖2
L2(Ω)N , (3.27)

where C0, C1 are independent of α and β. Now, since h
(τ)
i 1ω×(0,τ) is uniformly bounded in

L2(0, τ ;L2(Ω)) for each i = 1, . . . , N, i 6= j and ϕ0 ∈ H, it follows that the solution φ of
system (3.2) is uniformly bounded in C0([0, τ ];H) (see [Tem01], Theorem 1.1, page 172).

Then, for each n ∈ N we denote by φn the solution of system (3.2) associated to h
(τ)
n and

consider ηi = h
(τ)
i,n in (3.7). Thus, we can extract subsequences {h(τ)

i,n′}, {φn′}, and {θ(τ)
i,n′}, with

αn′ → 0 and βn′ →∞ (recall that h depends on α and β), such that

h
(τ)
i,n′ ⇀ h

(τ)
i weakly in L2(0, τ ;L2(ω)), θ

(τ)
i,n′ ⇀ θ

(τ)
i weakly in H1(0, τ ;L2(Ω)),

and
φn′ ⇀ φ weakly in L2(0, τ ;V ), ∂tφn′ ⇀ ∂tφ weakly in L2(0, τ ;V ∗),

where V := {φ ∈ H1
0 (Ω)N : ∇ · φ = 0} and V ∗ is the dual space of V . Therefore, using

compactness argument between Banach spaces (see [Tem01], Theorem 2.1, page 184) we
deduce that

φn′(·, 0)→ φ(·, 0) in H, n′ → +∞. (3.28)

On the other hand, from (3.27) we have

β‖h(τ)
j ‖2

L2(0,τ ;L2(ω)) ≤ C0eC1/τ9‖ϕ0‖2
L2(Ω)N and ||φn′(·, 0)||L2(Ω)N → 0, n′ →∞,

this implies that h
(τ)
j is uniformly bounded in L2(0, τ ;L2(ω)) and thanks to (3.28), φ(·, 0) = 0

in Ω. Moreover, if β → +∞ then h
(τ)
j → 0 in L2(0, τ ;L2(ω)). Finally, for fixed ϕ0 ∈ H we

find:
− ν

σ(T )
(∆y(·, T ), ϕ0)L2(Ω)N −

σ(0)

σ(T )

N∑
i=1,i6=j

(yi, θ
(T )
i,n′ )H1(0,T ;L2(ω))

− 1

σ(T )

N∑
i=1,i 6=j

T∫
0

σ′(T − s)(yi, θ
(τ)
i,n′)H1(0,T ;L2(ω))ds.


→ (f, ϕ0)L2(Ω)N ,

which concludes the proof of Theorem 3.7.
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3.4 Numerical examples

In this section we present a two dimensional numerical implementation of the reconstruction
formula (3.18) established in Theorem 3.5. In this case, the formula allows to recover the
H-projection of the source for the Stokes system (3.1) with observations of one component
of the solution over a subdomain ω × (0, T ). The objective is to test the feasibility of the
formula for different choices of the temporal dependency of the source σ(t) (see Remark 3.3).

Notice that we have to solve several null controllability problems (see (3.2)) and Volterra
integral equations (3.11) in order to compute the projections of f ∈ L(Ω)2 on some given
direction ϕk ∈ H. The numerical scheme to solve each Volterra equation is the same as in
[GOT13]. On the other hand, the null-controls with one vanishing component are approxi-
mated by using the two-parameter optimal controls introduced in the previous section. More
precisely, we implement the following algorithm:

Remark 3.4 Taking into account (3.23), let us first introduce (ψ̄, π̄) and (ψ̂, π̂), the corre-
sponding solutions of the following systems:


−∂tψ̄ − ν∆ψ̄ +∇π̄ = 0 in Ω× (0, τ),
∇ · ψ̄ = 0 in Ω× (0, τ),
ψ̄ = 0 on Γ× (0, τ),
ψ̄(·, τ) = ϕ0 in Ω,

(3.29)

and 
−∂tψ̂ − ν∆ψ̂ +∇π̂ = h(τ)1ω×[0,τ ] in Ω× (0, τ),

∇ · ψ̂ = 0 in Ω× (0, τ),

ψ̂ = 0 on Γ× (0, τ),

ψ̂(·, τ) = 0 in Ω.

(3.30)

Now, let us consider the linear operators L : H → L2(0, τ ;L2(ω)2) and L∗ : L2(0, τ ;L2(ω)2)→
H defined by

Lw(·, 0) := −w1ω×[0,τ ] and L∗h(τ) := −ψ̂(·, 0),

where w is the solution of (3.24) with initial condition w(·, 0) and ψ̂ is the solution of (3.30).
Furthermore, we consider the linear operator Λ = L∗L : H → H defined by

Λw(·, 0) := −I(j)
β ψ̂(·, 0),

for either j = 1 or j = 2, where

I
(1)
β =

(
β 0
0 1

)
and I

(2)
β =

(
1 0
0 β

)
.

Thus, the solution of the optimal control system (3.23)-(3.25) is given by the unique solution
of:

Find w(·, 0) ∈ H such that (αI + I
(j)
1/βΛ)w(·, 0) = ψ̄(·, 0). (3.31)
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In the previous scheme, as we have already mentioned, the null exact final condition is
penalized by α and the vanishing component of the control is penalized by the second pa-
rameter β.

The finite dimensional version for the operator Λ is based on the time-space discretization
of system (3.23)-(3.25). More precisely, we consider finite differences for the time discretiza-
tion and a mixed finite element formulation in space using P2-type elements for the velocity
and P1-type elements for the pressure which the classical finite element spaces of piecewise
polynomials (see e.g. [All05], [GLH08]).

For the sake of clarity, we list all the steps involved in the reconstruction algorithm:

• Compute the matrix associated to the operator Λ: in the jth column of the matrix
we put the solution of (3.23)-(3.25) with the jth basis finite element function as initial
condition.

• Compute the first M eigenfunctions and eigenvectors (λk.ϕk), k = 1, . . . ,M , of the
Stokes system (3.19).

• For each eigenvector ϕk, compute the solution of (3.29) with initial condition ϕ0 =
ϕk ∈ H. Next, given the parameters α, β and ψ̄(·, 0) solve (3.31) to obtain w(·, 0).

• In order to obtain the optimal control h(τ), solve (3.24) with initial condition w(·, 0),
obtained from the previous step by considering (3.25), for each τ ∈ (0, T ].

• For each control h(τ), we compute the Volterra equation K∗θ(τ) = h(τ) (recall to see the
discretization of (3.11) in [GOT13]), to obtain θ(τ) for some discretized set τ ∈ (0, T ].

• Finally, use (3.18) to find the coefficients of the source f . This complete the application
of the reconstruction formula (3.18).

• Apply, if needed, an extra optimization method (3.32). See the discussion below.

In practice, we observe that the numerical results obtained with the formula (3.18) al-
low to detect with some accuracy the position of the source but not at all its amplitude.
Therefore we implement an additional step consisting on a classical optimization algorithm
that minimizes the fit between predicted and measured observations, but restricted to the
frequencies associated to large amplitudes previously found. More precisely:

f̂ = argmin
g=

∑
k
ckfkϕk

‖ym − y(g)‖2
H1(0,T ;L2(ω)2) + µ‖g − f‖2

H , (3.32)

where ym are the given measurements, µ > 0 is some regularization parameter and f is the
recovered source using the reconstruction formula (3.18) for 0 ≤ k ≤ M by adjusting the
unknown coefficient fk for which g is significant by a factor ck.

For the numerical experiments we use the following data: we fix Ω = (0, 1) × (0, 1) and
T = 1 and M = 38. The observation set ω is (0, 1) × (0.3, 0.7). The mesh size is h = 1/20
and the time step size is ∆t = 5 × 10−3. The diffusion parameter is ν = 5 × 10−2 and
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the regularization parameters are α = 5 × 10−3 and β = 15. We consider a divergence free
unknown source of the form f = (−∂2g, ∂1g), where g is a Gaussian function with amplitude
A = 10√

2π
, center (x0, y0) = (0.5, 0.8) and standard deviation 1 × 10−1 (see Figure 3.1 first

column).

Using the functions σ1, σ2 mentioned in the Remark 3.6, we show in Figure 3.1 and Fig-
ure 3.2 the relative errors in L2(Ω)2 of the Gaussian reconstructed source with respect to
the projected source for both components. Here, it is important to mention that the null
controls only depend on the domain Ω and the observatory ω, therefore is not necessary to
recalculate them when σ(t) is changed. In Figure 3.1, the first column shows the projec-
tion of the unknown source on H, the second column is the estimated source using formula
(3.18) by observing both velocity components. The third and fourth column represent the
reconstruction when a component is missing in the velocity. Finally, the last two columns
represent the reconstructed source when we apply the extra optimization algorithm (3.32).
The Figure 3.2 is analogous to Figure 3.1, but for another time dependency of the source
σ = σ2(t) (see Remark3.3).

Figure 3.1: Reconstruction of both component of a divergence free source from local measure-
ments of some components of the velocity in the observatory ω = (0, 1)× (0.3, 0.7) using the
reconstruction formula (3.18), and optimization algorithm (3.32), for the case σ = σ1. The
L2 relative error of the reconstructions with respect to the projected real source is presented.

In Figure 3.3 we present the source coefficients fk for each frequency number k in the
following cases: the real one, the obtained using the reconstruction formula (3.18) and after
optimization algorithm (3.32). The Figure 3.3 a) shows estimated coefficients by observing
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Figure 3.2: Reconstruction of both component of a divergence free source from local measure-
ments of some components of the velocity in the observatory ω = (0, 1)× (0.3, 0.7) using the
reconstruction formula (3.18), and optimization algorithm (3.32), for the case σ = σ2. The
L2 relative error of the reconstructions with respect to the projected real source is presented.

the first velocity component and in Figure 3.3 b) corresponds when we observe the second
component. In both cases, the optimization algorithm approximates better the coefficients,
this can be clearly seen in the last two columns in Figure 3.1 and Figure 3.2.

Comments and related open problems

The strategy presented here for solving the source inverse problem could be useful for
other related systems. For instance, the linear quasi-geostrophic ocean model described in
[GOP11] could be also considered. However, there are not existing null-controllability results
with one missing component for this type of Stokes systems. The major difficulty is the
Coriolis term that is coupling the equations. The corresponding global Carleman inequalities
seem difficult to prove in this case due to the weight balance that is critical in the presence
of zero order terms. Thus, this inverse source problem is an open problem.

Also, it is known that local null-controllability with one missing components as presented
in Lemma 3.1 is still possible to the Navier-Stokes system with Dirichlet homogeneous bound-
ary conditions [CG13]. This motivates another open problem related to the present work,
which is the extension, via linearization, of some source recovering formula in the non-linear
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Figure 3.3: The source coefficients fk for each frequency number k are presented in the
following cases: the real one, the obtained using the reconstruction formula (3.18) and after
optimization algorithm (3.32). The part a) shows the reconstruction by observing the first
component of the velocity and b) shows the behavior when we observe the second component
of the velocity. In this case σ = σ1.

case.

Finally, when we deal with the inverse source problem for the Stokes system, we have
to restrict ourselves to sources in the divergence-free space H, in order to avoid pressure
measurements. The case of a source with non zero divergence is an open problem.
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Chapter 4

Second inverse source problem for the
Stokes system

4.1 Introduction

In this chapter we deal with an inverse problem of determining of spatially varying factor in
a source term f(x) of the N -dimensional Stokes system yt−ν∆y+∇p = R(x)f(x), assuming
R(x) known. The main result establishes the Lipschitz stability through one component of
velocity. Our result involved Carleman inequalities and degenerate elliptic operators.

Let Ω be a nonempty bounded connected open subset of RN (N = 2 or N = 3) of class
C∞. We will use the notation Q := Ω×(0, T ), Σ := ∂Ω×(0, T ) and by n(x) the outward unit
normal vector to Ω at the point x ∈ ∂Ω. We consider the Stokes system for an incompressible
viscous fluid flow: 

yt − ν∆y +∇p = F (x) in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(4.1)

where ν > 0 is a constant describing the viscosity, which by simplicity we assume that the
density is one (homogeneous fluid). The density of external force that produce the movement
of the fluid is

F (x) := R(x)f(x), (4.2)

where R(x) = (r1(x), . . . , rN(x))t is a vector-valued function and f = f(x) is a real-valued
function.

Inverse source problem. Let ω b Ω ⊂ RN an arbitrary sub-domain, 0 < θ < T and the
velocity field y satisfying (4.1). The inverse problem is to determine f(x) by observation
data yj|ω×(0,T ), yj(·, θ)|Ω, yj|Σ for some j ∈ {1, . . . , N}.
In general aspects, the inverse problems of this type for the Stokes equations have not been
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studied intensively. As relevant results, we refer to [CIPY13], and [POV+00]. In [CIPY13],
Choulli et al. proved the Lipschitz stability for linearized Navier Stokes equations with ho-
mogeneous Dirichlet boundary conditions and data in an arbitrary subset ω. The novelty of
our work is the Lipschitz stability through data of one component of velocity.

We mention that the main result, Theorem 4.3, is developed in the spirit of [Kli81] and
[CIPY13], and using ideas presented in [[IY98], [FCGBGP06], [Fic60], [Ole12]] and other
related works. In [Kli81], the author introduce a methodology called Bukhgeim Klibanov’s
method the which is based on Carleman estimates to inverse problems.
The documents [Ole12] and [Fic60] treat different aspects of a general theory of second order
equations with nonnegative characteristic form (also called degenerating elliptic equations
or elliptic-parabolic equations), which are used in the proof of Theorem 4.3. In the context
of degenerate elliptic operators, our Proposition 4.2 describe an inequality in L2(Ω) for the
Dirichlet homogeneous problem:{

L(y) ≡ akj(x)yxkxj + bk(x)yxk + c(x)y = h in Ω,
y = 0 on ∂Ω,

(4.3)

where akj(x)ξjξk ≥ 0 for any vector ξ = (ξ1, . . . , ξN). The interested reader can find more
details of the problem (4.3) (existence, uniqueness, weak solutions, etc) in [Fic60],[Ole12].

4.2 Preliminary results

In this section we will present some result on Carleman inequalities and second order equa-
tions with nonnegative characteristic form, which are necessary to prove of Theorem 4.3.

4.2.1 Carleman inequalities

In order to establish the Carleman inequality, we need to define some weight functions. Let
ω be a nonempty open subset of RN and η ∈ C2(Ω) such that

|∇η| > 0 in Ω \ ω, η > 0 in Ω and η ≡ 0 on ∂Ω. (4.4)

The existence of such a function η is proved in [FI96b]. Then, for all λ ≥ 1 we consider the
following weight functions:

α(x, t) =
e2λη(x) − eλ‖η‖∞

t(T − t) , ξ(x, t) =
eλη(x)

t(T − t) ,

α∗(t) = min
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = max
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t),

(4.5)
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In order to prove Theorem 4.3, we will use the following results, which was proved in
[FCGBGP06] for a parabolic equation with Fourier boundary conditions. Let us introduce
the system 

ψt −∆ψ = f1 +∇ · f2 in Q,
(∇ψ + f2) · n = f3 on Σ,
ψ(·, 0) = ψ0 in Ω,

(4.6)

where f1 ∈ L2(Q), f2 ∈ L2(Q)N and f3 ∈ L2(Σ). We present now this result:

Lemma 4.1 Under the previous assumptions on f1, f2 and f3, there exist λ, σ1, σ2 and C,
only depending on Ω and ω, such that, for any λ ≥ λ, any s ≥ s = σ1(eσ2λT + T 2) and any
ψ0 ∈ L2(Ω), the weak solution to (4.6) satisfies∫∫

Q

e2sα(sλ2ξ|∇ψ|2 + s3λ4ξ3|ψ|2)dxdt+ s2λ3

∫∫
Σ

e2sαξ2|ψ|2dσdt

≤C
(∫∫
Q

e2sα(|f1|2 + s2λ2ξ2|f2|2)dxdt

+ sλ

∫∫
Σ

e2sαξ|f3|2dσdt+ s3λ4

∫∫
ω×(0,T )

e2sαξ3|ψ|2dxdt
)
.

(4.7)

4.2.2 Degenerate elliptic equations

In this section we present a result about second order equations with nonnegative charac-
teristic (also called degenerating elliptic equations). Precisely, Proposition 4.2 is the main
result in this section.
The problem (4.3) was studied by Fichera in [Fic60]. In [Fic60], the author define subsets
on the boundary ∂Ω and differents functions, called Fichera’s functions in order to obtain a
general development. We omit certain details and invite the interested reader to see [Fic60]
and[Ole12].
Next, from (4.3) we introduce the notation

L∗(v) ≡ (akjv)xkxj − (bkv)xk + cv = akjvxkxj + b∗vxk + c∗v, (4.8)

where
b∗ = 2akjxj − bk, c∗ = akjxkxj − b

k
xk

+ c.

The following Proposition determine an estimate in the space L2(Ω) for the problem (4.3).
The arguments of the proof are based in [[Ole12], page 24, Theorem 1.2.1].

Proposition 4.2 If c < 0 and −c∗ − c > 0 in Ω ∪ ∂Ω, then all function y ∈ C2(Ω ∪ ∂Ω)
with y = 0 on ∂Ω satisfies

‖y‖L2(Ω) ≤
2

min
Ω∪∂Ω

[−c∗ − c]‖L(y)‖L2(Ω). (4.9)
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Remark 4.1 We remark that the assumption c < 0 in Proposition 4.2 is essential and may
not be replaced by the condition c ≤ 0. This condition is based in the maximum principles
[[Ole12], pag. 21].

Proof of Proposition 4.2. The operator L(y) may be written in the form

L(y) ≡ (akjyxk)xj + (bk − akjxj)yxk + cy.

Setting bk − akjxj =: lk and using (4.8) we have

L∗(w) ≡ (akjwxk)xj − (lkw)xk + cw,

L(y)w − L∗(w)y = (akjwyxk − akjywxk)xj + (lkwy)xk .

Integrating in Ω and applying Ostrogradsky’s Theorem, we obtain∫
Ω

(L(y)w − L∗(w)y)dx = −
∫
∂Ω

[(akjwyxk − akjywxk)nj + (lkwy)nk]dσ, (4.10)

where n is the interior normal vector to ∂Ω.
Now, for every δ > 0 arbitrary, we consider the change of variable y → y2 + δ in (4.10) and
we obtain∫
Ω

(L(y2+δ)w−L∗(w)(y2+δ))dx = −
∫
∂Ω

[akjw(y2+δ)xk−akj(y2+δ)wxk ]nj+[lkw(y2+δ)]nkdσ.

(4.11)
Since y = 0 on ∂Ω observe that akjw(y2 + δ)xknj = 0 on ∂Ω.
On the other hands, it is easy to see that

L(y2 + δ) = 2yL(y) + c(−y2 + δ) + 2(y2 + δ)akjyxkyxj . (4.12)

From (4.11) and (4.12) we have:∫
Ω

[L∗(w)(y2 + δ)− cw(−y2 + δ)− 2w(y2 + δ)akjyxkyxj ]dx

= 2

∫
Ω

wyL(y)dx+ δ

∫
∂Ω

[lknkw − akjwxknj]dσ.

Taking into account that akjyxkyxk ≥ 0, y = 0 on ∂Ω and considering w = −1 it follows that∫
Ω

[L∗(−1)(y2 + δ)− c(−y2 + δ)]dx ≤ −2

∫
Ω

yL(y)dx− δ
∫
∂Ω

lknkdσ. (4.13)

In (4.13) we now let δ approach zero. Then

lim
δ→0

(y2 + δ)[L∗(−1)− c(y2 + δ)−1(−y2 + δ)] = y2(L∗(−1)− c) = y2[−c∗ − c] ≥ 0 in Ω.

Therefore, from (4.13) we obtain that∫
Ω

y2dx ≤ 2

min
Ω∪∂Ω

[−c∗ − c]

∫
Ω

|y||L(y)|dx. (4.14)

Applying Hölder’s inequality to the integral on the right-hand side of (4.14), we obtain (4.9).
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4.3 Main result

In this section we prove our the Lipschitz stability for the Stokes system (4.1), from measure-
ments of one velocity component, and when the source F depends in space. We also discuss
the difficult in the general case using the technical presented below.

Our main result is given in the following theorem.

Theorem 4.3 Let us i, j ∈ {1, . . . , N}, i 6= j and 0 < θ < T . Let F (x) = R(x)f(x) satisfy
the conditions

N∑
i=1,i 6=j

(rj(x)xi)xi < 0, rj(x) > 0 and ri(x) = 0 ∀i 6= j x ∈ Ω, (4.15)

f ∈ C2(Ω) with f = 0 on ∂Ω. (4.16)

Then there exist a constant C = C(Ω, ω, θ, R) > 0 such that for all y satisfying (4.1) and
∂kt yj ∈ L2(0, T ;H4(Ω)) ∩H1(0, T ;H2(Ω)),with k = 0, 1, 2,

‖f‖L2(Ω) ≤ C

(
‖∆2yj(·, θ)esα(·,θ)‖L2(Ω) +

2∑
k=0

‖(ξ̂)1/2esα̂∂kt ∆yj‖L2(0,T ;H5/4(∂Ω))

+
2∑

k=0

‖ξ3/2esα∂kt ∆yj‖L2(ω×(0,T ))

)
,

(4.17)

where s > 0 is sufficiently large.

Remark 4.2 In Theorem 4.3, observe that θ > 0. The case of θ = 0 is essentially difficult,
the Carleman estimates for parabolic equation must hold for t in a neighborhood of θ, namely,
θ − δ < t < θ + δ, with some δ > 0. For θ = 0, this requires extensions of solutions for
parabolic equations to t < 0, which is impossible in general. Therefore, our inverse problem
with θ = 0 is an open problem.

Remark 4.3 On the other hand, we observe that it suffices to consider only the case of
θ = T/2. In effect, let δ = {θ, T − θ}, then we consider (4.1) in the domain Ω × (0, 2θ)
instead of Ω × (0, T ). If δ = T − θ, then in (4.1) we make the change of the variables
t → t + (T − 2θ) to consider the domain Ω × (0, 2(T − θ)) instead of Ω × (0, T ). Since
Ω× (θ − δ, θ + δ) ⊂ Ω× (0, T ), all the conditions of Theorem 4.3 hold true.

Proof of Theorem 4.3. Without any lack of generality, we treat the case of j = 1. The
arguments can be easily extended to the general case.
In general, taking into account the divergence free condition of the system (4.1), we deduce

∆p = ∇ · F in Q. (4.18)

The rest of the proof is divided in two steps. In step 1, we establish a Carleman inequality
in which appears the observations from one component of velocity. In step 2, we connect the
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previous result with Proposition 4.2, which is referent to degenerate elliptic operators.

Step 1. We apply the operator ∆ to the equation satisfied by y1 and we denote ψ := ∆y1.
We then have the parabolic equation

ψt −∆ψ = ∆(r1f)− ∂1∇ · F in Q. (4.19)

Using the Lemma 4.1 with f1 = ∆(r1f)− ∂1∇ · F and f2 = 0, we obtain

s3

∫∫
Q

e2sαξ3|ψ|2dxdt ≤ C

(∫∫
Q

e2sα|∆(r1f)− ∂1∇ · F |2dxdt

+ s

∫∫
Σ

e2sαξ
∣∣∣∂ψ
∂n

∣∣∣2dσdt+ s3

∫∫
ω×(0,T )

e2sαξ3|ψ|2dxdt

) (4.20)

for every s ≥ s0.
By repeating this idea with ∂tψ and ∂2

ttψ in (4.19) and using (4.20), we get the following
estimate:

s3

2∑
k=0

∫∫
Q

e2sαξ3|∂kt ψ|2dxdt ≤C
(∫∫

Q

e2sα|∆(r1f)− ∂1∇ · F |2dxdt

+
2∑

k=0

s

∫∫
Σ

e2sαξ
∣∣∣ ∂k
∂tk

∂ψ

∂n

∣∣∣2dσdt+ s3

∫∫
ω×(0,T )

e2sαξ3|∂kt ψ|2dxdt

)
(4.21)

for every s ≥ s0.
Now, taking into account that α(x, θ) ≥ α(x, t) for (x, t) ∈ Q and e2sα(x,0) = 0 for x ∈ Ω, we
have

I1 :=C−1

∫
Ω

|∂t∆y1(x, θ)|2e2sα(x,θ)dx

=

θ∫
0

d

dt

(∫
Ω

ξ(x, t)−1|∂t∆y1(x, t)|2e2sα(x,t)dx
)

dt

=

θ∫
0

∫
Ω

(2sξ−1(∂tα)|∂t∆y1|2 + (∂tξ
−1)|∂t∆y1|2 + 2ξ−1∂2

t ∆y1∂t∆y1)e2sαdxdt

≤
∫∫
Q

(2sξ−1(∂tα)|∂t∆y1|2 + (∂tξ
−1)|∂t∆y1|2 + 2ξ−1∂2

t ∆y1∂t∆y1)e2sαdxdt,

(4.22)

but ∂tα(x, t) satisfies the estimate

|∂tα(x, t)| ≤ Cξ2, (x, t) ∈ Q,
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so that, using (4.22) and (4.21) we deduce

s2

∫
Ω

|∂t∆y1(x, θ)|2e2sα(x,θ)dx

≤ C

∫∫
Q

(s3ξ|∂t∆y1|2 + s2|∂2
t ∆y1|2)e2sαdxdt

≤ C

(∫∫
Q

e2sα|∆(r1f)− ∂1∇ · F |2dxdt

+
2∑

k=0

s

∫∫
Σ

e2sαξ
∣∣∣ ∂k
∂tk

∂ψ

∂n

∣∣∣2dσdt+ s3

∫∫
ω×(0,T )

e2sαξ3|∂kt ψ|2dxdt

)
(4.23)

for every s ≥ C.
At this moment we have

s2

∫
Ω

|∂t∆y1(x, θ)|2e2sα(x,θ)dx

≤ C
2∑

k=0

(∫∫
Q

e2sα|∆(r1f)− ∂1∇ · F |2dxdt

+ ‖s1/2(ξ̂)1/2esα̂∂kt ∆y1‖2
L2(0,T ;H1+ε(∂Ω)) + s3

∫∫
ω×(0,T )

e2sαξ3|∂kt ∆y1|2dxdt

)
,

(4.24)

for every ε > 0 arbitrarily small and for every s ≥ C.
On the other hand, applying the operator ∆ to the first equation of (4.1) and using (4.18)
we have

∆(r1(x)f(x))− ∂1∇ · F (x) = ∂t∆y1(x, θ)−∆(∆y1(x, θ)), x ∈ Ω.

Let us define Lf and Dk for k = 0, 1, 2 by:

L(R(x)f(x)) := ∆(r1(x)f(x))− ∂1∇ · F (x) in Ω (4.25)

and
Dk :=‖∆2y1(·, θ)esα(·,θ)‖L2(Ω) + ‖(ξ̂)1/2esα̂∂kt ∆y1‖L2(0,T ;H5/4(∂Ω))

+ ‖ξ3/2esα∂kt ∆y1‖L2(ω×(0,T )).
(4.26)

Then

s2

∫
Ω

|L(R(x)f(x))|2e2sα(x,θ)dx ≤ C
(
s2

∫
Ω

|∂t∆y1(x, θ)|2e2sα(x,θ)dx+s2‖∆2y1(·, θ)esα(·,θ)‖2
L2(Ω)

)
.

Putting together (4.24) and the before inequality we deduce the following estimate:

s2

∫
Ω

|L(R(x)f(x))|2e2sα(x,θ)dx ≤ C

(∫∫
Q

e2sα|L(R(x)f(x))|2dxdt+ s3

2∑
k=0

D2
k

)
, (4.27)
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for every s ≥ C. Since α(x, θ) ≥ α(x, t) for (x, t) ∈ Q, we can absorb in (4.27) the first term
on the right-hand side by the left hand side, for every s ≥ C.

Step 2. Taking into account that the operator L(R(x)f(x)) ≡ LRf depends of the dimen-
sion, we consider the following cases.

a) Case of N = 3. The operator L(R(x, θ)f(x)) ≡ LRf defined in (4.25) can be rewritten
by

LRf =r1(∂2
22f + ∂2

33f)− r2∂
2
12f − r3∂

2
13f

− (∂2r2 + ∂3r3)∂1f + (2∂2r1 − ∂1r2)∂2f + (2∂3r1 − ∂1r3)∂3f

+ [∂2
22r1 + ∂2

33r1 − ∂2
12r2 − ∂2

13r3]f,

(4.28)

or equivalently
LRf = akjfxkxj + bkfxk + cf, (4.29)

where

A = (akj)Nk,j=1 :=

0 −r2 −r3

0 r1 0
0 0 r1

 , (4.30)

b1 := −∂2r2 − ∂3r3, b2 := 2∂2r1 − ∂1r2, b3 := 2∂3r1 − ∂1r3

and
c = ∂2

22r1 + ∂2
33r1 − ∂2

12r2 − ∂2
13r3 ≡ Hess : A.

From (4.15) it follows that ξtAξ ≥ 0 for all ξ = (ξ1, . . . , ξN) ∈ RN . Furthermore, it is
easy to see that c∗ = 0.
From (4.29) and (4.16), we can apply Proposition 4.2 with c = (∂2

22 + ∂2
33)r1 < 0.

Therefore we obtain

‖f‖L2(Ω) ≤
2

min
Ω∪∂Ω

[−Hess : A]
‖LRf‖L2(Ω).

Multiplying by min
x∈Ω

e2sα(x,θ) =: C2 the previous inequality and putting together with

(4.27), we have

C2‖f‖2
L2(Ω) + s2

∫
Ω

|L(R(x)f(x))|2e2sα(x,θ)dx

≤ C

(∫∫
Q

e2sα|L(R(x)f(x))|2dxdt+ s3

2∑
k=0

D2
k

)
+ C2C(A)‖LRf‖2

L2(Ω).

(4.31)

Taking s > 0 sufficiently large we can absorb the last term on the right-hand side onto
the left-hand side. Thus the proof in the case N = 3 is complete.

b) Case of N = 2. The arguments presented until (4.27) are not dependent on the
dimension. However, in this case the operator L(R(x)f(x)) ≡ LRf is given by

LRf = r1∂
2
22f − r2∂

2
12f − (∂2r2)∂1f + (2∂2r1 − ∂1r2)∂2f + [∂2

22r1 − ∂2
12r2]f, (4.32)
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or equivalently
LRf = akjfxkxj + bkfxk + cf,

where

Ã = (akj)Nk,j=1 :=

(
0 −r2

0 r1

)
,

and
b1 := −∂2r2, b2 := 2∂2r1 − ∂1r2, c ≡ (Hess : Ã) = ∂2

22r1.

In this case we also have c∗ = 0. Then, using Proposition 4.2 with c = (Hess : Ã) < 0
we deduce

C2‖f‖2
L2(Ω) + s

∫
Ω

|L(R(x)f(x))|2e2sα(x,θ)dx

≤ C
2∑

k=0

(∫∫
Q

e2sα|∂kt L(R(x)f(x))|2dxdt+ s3D2
k

)
+ C2C(Ã)‖LRf‖2

L2(Ω).

Taking s > 0 sufficiently large (s > CC2C(Ã)) we can absorb the first and last term
on the right-hand side onto the left-hand side.
This finishes the proof of Theorem 4.3.

Comment. In theorem 4.3, the hypothesis (4.15) allows us to obtain a second order
operator with nonnegative characteristic form. However, in the case general of the operator
LRf such that is described in (4.28) or (4.32), the condition ξTAξ ≥ 0 does not true for every
ξ ∈ RN .
There exists other path in order to obtain in the same sense as above an inverse source
problem for the system (4.1), where now the source is F (x, t) = R(x, t)f(x) in Q, where
R(x, t) is a known vector field and f(x) unknown. However, this way involved concepts in
degenerate Sobolev spaces (see Appendix and references therein), which impose additional
conditions on R(x, t) and even difficult to check.
Finally, we comments that the inverse source problem for the Stokes system (4.1) with source
F (x, t) = R(x, t)f(x) from local and missing velocity measurements, is an open problem.
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Appendix A

Degenerate Sobolev spaces

A.1 Introduction

To illustrate briefly a notion of degenerate Sobolev space, we recall that w ∈ H1,2(Ω) is a
weak solution of

Lw = g in Ω (A.1)

where L = ∇tQ(x)∇ and g ∈ L2(Ω), provided

−
∫
Ω

∇tv(x)Q(x)∇w(x)dx =

∫
Ω

v(x)g(x)dx (A.2)

for all v ∈ Lipc(Ω), the space fo Lipschitz functions with compact closure in Ω. On the other
hands, we would like to define a large Sobolev space than H1,2(Ω) for which the integrals
in (A.2) make sense (exploiting tha fact that Q(x) may degenerate), but for which the
calculus necessary for the proof the regularity continues to hold. One important feature in
the classical case is that Lipschitz, or even smooth, functions are dense in H1,2(Ω), and this
density permits the transfer of the required calculus in H1,2(Ω). There are thus two natural
approaches in the literarure. One is denoted H1,2

χ where χ is a collection of vector fields, and
uses weak derivatives defined via integration by parts, in which a calculus os problematic,
and the other is denoted W1,2

Q where Q defined a general quadratic form, and uses strong
derivatives defined by taking strong limits of Lipschitz functions, which inherits a calculus
by continuity.The denegerate Sololev space H1,2

χ defined using weak derivatives has at least

two advantages over the degenerate Sobolev space W1,2
Q defined using strong derivatives:

a. Membership in H1,2
χ is easily decided using the definition of weak derivatives, while

membership in W1,2
Q is difficult to decide using Cauchy sequences,

b. The natural bounded mao from H1,2
χ to L2 is one-to-one while the corresponding map

from W1,2
Q to L2 may not be-i.e. derivatives in W1,2

Q are not uniquely determined by
the L2 component, whereas they are in H1,2

χ ,

while the space W1,2
Q has at least one crucial advantages over H1,2

χ :
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c. There is a calculus available for the elements in W1,2
Q that is inherited by continuity

from the calculus for the dense subpace of Lipschitz functions, while such a calculus in
generally problematic in H1,2

χ .

In [SW10] the authors proved that these spaces always coincide in dimension n = 1 whenever
the are both defined, also they proved that W1,2

Q is naturally embedded in H1,2
χ (provided χ

is such that H1,2
χ can be defined), and as a consequence gradiants are uniquely determined in

W1,2
Q . In [CRW13] showed that W1,2

Q and H1,2
χ coincide in higher dimensions for a collection

of Lipschitz vector fields.

A.2 Some results in linear degenerate operators

Let Ω̂ ⊂ R3 be a open and Ω ⊂ Ω̂. In this section we mention definitions and results to
second order equations with nonnegative characteristic, specifically we mention existence and
spectral properties for weak solutions the second order non-elliptic linear Dirichlet problem
of the form

Xu = ∇′Q(x)∇u+ HRu+ S’Gu+ Fu = f̃ + T’g in Ω

u = 0 on ∂Ω,
(A.3)

whereQ = Q(x) denote a bounded nonnegative definite symmetric measurable matrix defined
on Ω̂ × R3 and H,G,R,S,T are functions and vector fields suitable. Moreover, Q(x, ξ) =
ξ′Q(x)ξ represent the quadratic form related to Q, this is:

i) 0 ≤ Q(x, ξ) for all ξ ∈ R3 and a.e. x ∈ Ω̂. Note that Q(x, ξ) may vanish for non-zero
ξ ∈ R3.

ii) There is a C0 > 0 so that Q(x, ξ) ≤ c0|ξ|2 for all ξ ∈ R3 and a.e. x ∈ Ω̂.

Given a locally integrable to Q(x, ξ) = ξ′Q(x)ξ on Ω̂,.i.e.∫
L

‖Q(x)‖dx <∞ for all compact L ⊂ Ω̂,

where ‖Q‖ is the operator norm on 3×3 matrices (all norms on a finite dimensional space are
equivalent), we can define the form-weighted vector-valued L2 space L2(Ω̂,Q) as consisting
of all measurable R3-valued functions v(x) = (v1(x), v2(x), v3(x)), x ∈ Ω̂, satisfying

‖v‖L2(Ω̂,Q) =
(∫

Ω̂

Q(x,v(x))dx
)1/2

<∞ (A.4)

Remark A.1 We suppose as usual that L2(Ω̂,Q) consists of equivalent classes. In [SW10]
is proved that the linear space L2(Ω̂,Q) is complete with respect to the norm (A.4), and is in
fact a Hilbert space with respect to the associated iiner product

〈v,w〉L2(Ω̂,Q) =

∫
Ω̂

v(x)′Q(x)w(x)dx. (A.5)
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Definition A.1 Let Q be a locally integrable quadratic form on Ω̂. Define nonnegative
functional (possibly infinite) ‖w‖Q on the linear space Lip(Ω̂) by

‖w‖Q =
(
‖w‖2

L2(Ω̂)
+ ‖∇w‖2

L2(Ω̂,Q)

)
, w ∈ Lip(Ω̂) (A.6)

We then define the degenerate Sobolev space W 1,2
Q as the completion of the linear space

LipQ(Ω̂) = {w ∈ Lip(Ω̂) : ‖w‖Q <∞} (A.7)

in the metric d(v, w) = ‖v − w‖Q.

Remark A.2 In the case that Q and Ω̂ are bounded, we can equivalently define W 1,2
Q as the

completion of C1 in the metric d(w, v) = ‖v−w‖Q. Indeed, this follows inmediately from the
fact that C1(Ω̂) is dense in the classical Sobolev space H1,2(Ω), so that given w ∈ Lip(Ω̂) ⊂
H1,2(Ω̂) and ε > 0, we can find v ∈ C1(Ω̂) with

‖v − w‖W 1,2
Q
≤ C‖v − w‖H1,2(Ω̂) < ε.

By construction W 1,2
Q is a Banach space of equivalence classes of Cauchy sequences in

LipQ(Ω̂). If W= {wk}∞k=1 a is a Cauchy sequence of LipQ(Ω̂) functions, i.e. wk ∈ Lip(Ω̂) and

‖wk − wl‖W 1,2
Q
→ 0 as k, l→∞, (A.8)

then there are elements (depending only on the equivalent classs ) in W 1,2
Q , w ∈ L2(Ω̂)

and v ∈ L2(Ω̂,Q) such that wk → w in L2(Ω̂) and ∇wk → v in L2(Ω̂,Q). The pair
(w,v) ∈ L2(Ω̂) × L2(Ω̂,Q) represents the equivalence class containing the Cauchy sequence
W in the space W 1,2

Q , and provides a Hilbert space isomorphism from W 1,2
Q to a closed

subspace W 1,2
Q of L2(Ω̂)×L2(Ω̂,Q) by sending the equivalence class of W to (w,v). it is real-

ization W 1,2
Q of the degenerate Soboles space W 1,2

Q that we will use often in the general setting.

However, the vector-valued function v ∈ L2(Ω̂,Q) is not in general uniquely determined
by w ∈ L2(Ω̂) if (w,v) ∈ L2(Ω̂)×L2(Ω̂,Q). In other words, if P is the Hilbert space projec-
tion of L2(Ω̂)×L2(Ω̂,Q) onto L2(Ω̂), then the restriction to W 1,2

Q is not in general one-to-one
(see [FKS82] for a well known example).

The space W 1,2
Q,0 is obtained in a similar manner, but in this case we complete the set

Lip0(Ω), the set Lipschitz functions having compact support in Ω with respect to the norm
(A.6).

For clarity, we always write QH1(Ω) and QH1
0 (Ω) in place of W 1,2

Q (Ω) and W 1,2
Q,0(Ω) re-

spectively, taking isomorphism in context. We adopted this notation in lieu of W 1,2
Q (Ω) and

W 1,2
Q,0(Ω), as is used in [SW10], [CRW13], in order to agree with classical literature. See for

example [MR15], where it is convention that ′′W ′′ spaces refer to Sobolev spaces defined with
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respect to distributional derivatives. Moreover, in all of our developments we will denote
the vector valued function −→g of the pair (w,−→g ) ∈ QH1(Ω) by writing −→g = ∇w, and we
will refer to it as the gradiant part (or simple the gradiant) of w and we will often abused
notation by writing w ∈ QH1(Ω) in place of (w,∇w) ∈ QH1(Ω).
We also mention that is possible to introduce definitions and make similar considerations for
the spaces QH1,p(Ω), QH1,p

0 (Ω) for 1 ≤ p <∞, even in the case |Q(x)| is locally nobounded.
For a complete discussion see [[SW10], [CRW13], [MR15] ].

Notation. Consider a vector field

W (x) =
n∑

i=1

wi(x)
∂

∂xi

= (w1(x, . . . , wn(x))) · ∇.

If u is a real valued function on Rn and ν is a vector in Rn we adopt the notation

Wu =
n∑

i=1

wi
∂u

∂xi

, 〈ν,W 〉 =
n∑

i=1

wiνi,

where 〈·, ·〉 denotes the standard inner product on Rn. The formal adjoint W ′(x) of the field
W (x) is denoted by

W ′(x)u := −div(w1(x)u(x), . . . , wn(x)u(x)) = −
n∑

i=1

∂

∂xi

(wi(x)u(x)).

A vector fieldW (x) as above is always identified with the vector valued function (w1(x), . . . , wn(x))
and is said to be subunit respect to the matrix Q in Ω if( n∑

i=1

wi(x)ξi

)2

≤ 〈ξ,Q(x)ξ〉 (A.9)

for every ξ ∈ Rn and almost every x ∈ Ω.

Remark A.3 If a vector field W (x) si subunit with respect to the matrix Q = Q(x) in Ω
we will simply refer to it as a ”subunit vector field ” with the set Ω and matrix Q taken in
context.
Given N ∈ N an N-tuple W = (W1, . . . ,WN) of vector fields and an RN -valued function
G = (g1, . . . , gN), WG denotes the inner product ”of W and G”,i.e.

WG =
N∑

i=1

Wi(x)gi(x).

Lastly, if u is a real valued function,

GWu =
N∑

i=1

gi(x)Wi(x)u(x), W’(Gu) =
N∑

i=1

W ′
i (x)(gi(x)u(x)). (A.10)

As in the elliptic case presented in [GT15], a negativity condition for the lower order terms
G,S and F of X will be required.
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Definition A.2 Let us Ω ⊂ Ω̂ open bounded domain in Rn. We say that X satisfies a
negativity condition if and only if ∫

Ω

(Fw + GSw)dx ≤ 0 (A.11)

for all w ∈ Lip0(Ω) satisfying w(x) ≥ 0 in Ω.

Remark A.4 The condition (A.11) is the key property that allows the application of the
Fredholm Alternative enabling one to conclude existence of weak solution to the problem
(A.3), see [Rod11].

This can also be seen in the elliptic case. For example, setting G = H =
−→
0 , g = 0, F = c

for a fixed constant c and Q(x) = Id, equation (A.3) becomes the elliptic equation

∆u+ cu = f̃ .

Here, the negativity condition (A.11) becomes c ≤ 0 which is sufficient for the existence of
weak solutions to equations of this type, see [GT15]. Lastly, the condition (A.11) can differ
of the presented in [GT15] by a negative sign, but they are equivalent. This is due to the
usage of the formal adjoint S’ of the vector field S in (A.3). This term appears as −S ′ in
[GT15].

Definition A.3 Let Ω ⊂ Ω̂. A second order operator X of the form

X = ∇′Q(x)∇+ HR + S’G + F (A.12)

is said to be of the subelliptic class related to (Ω̂, Q,Ω) if and only if

i) Q(x) is a bounded measurable non-negative definite symmetric matrix defined in Ω
satisfying (A.11).

ii) R,S are, for some N ∈ N, N-tuples of first order vector fields subunit with respect to
Q in Ω,

iii) H,G are measurable RN -valued functions defined in Ω, F is a real valued measurable
function defined in Ω and

iv) S,G, F satisfy the negativity condition (A.11).

We list the Poincaré and Sobolev inequalities adapted to the matrix Q in order to describe
Theorem A.4.

The local Poincaré Inequality. We say that the local Poncaré inequality of order p
holds if there are constants C > 0 and b ≥ 1 so that for every ρ-ball B(y, r) centered in Ω̂
with br ∈ (0, r1(y)) the inequality( 1

|Br|

∫
Br

|f − fBr |pdx
)1/p

≤ Cr
( 1

|Bbr|

∫
Bbr

|
√
Q∇f |pdx

)1/p

(A.13)

holds for all f ∈ Liploc(Ω̂). Notice that a continuity argument allows one to extend (A.13)
to hold for all pairs (f,∇f) ∈ QH1,p(Ω̂).
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The Global Sobolev Inequality. For an open set Ω ⊂ Ω̂ with Ω ⊂ Ω̂, we say that the
global Sobolev inequality holds on Ω holds if there are postitive constants C > 0 and σ > 1
such that (∫

Ω

|f |2σdx
) 1

2σ ≤ C
(∫

Ω

|
√
Q∇f |2dx

) 1
2

(A.14)

holds for all f ∈ Lip0(Ω).

The Global Poincaré with Gain ω. For an opens subset Ω of Ω̂ satisfying Ω ⊂ Ω̂
we say that the global Poncaré inequality with gain ω > 1 holds on Ω if there are contants
C > 0 and ω > 1 such that(∫

Ω

|f − fΩ|2ωdx
) 1

2ω ≤ C
(∫

Ω

|
√
Q∇f |2dx

) 1
2

(A.15)

holds for all f ∈ LipQ(Ω).

Remark A.5 1. If the global Poincaré inequality (A.15) holds, then Holder’s inequality
implies that the Global Weak Poincaré Inequality gain ω > 1:(∫

Ω

|f |2ωdx
) 1

2ω ≤ C
(∫

Ω

|
√
Q∇f |2dx+

∫
Ω

|f |2dx
) 1

2
(A.16)

also holds for all f ∈ LipQ(Ω).

2. In the elliptic case (Q(x) = Id), inequality of the form (A.15) and (A.16) are proved
when the boundary of Ω is sufficiently regular. For example, ∂Ω ∈ C0,1 is used in
[GT15] for such purposes. See [[GT15], Theorem 7.26] and related discussions.

3. In the elliptic case, where Q(x) = Id, the classical Sobolev inequality has the form

(A.14), for n ≥ 3, where σ = n
n−2

and C =
2(n− 1)√
n(n− 2)

, see [GT15].

The above inequalities are assume on quasimetric balls given by a quasimetric ρ(x, y)
defined in Ω̂ and upper semicontinuous in the second variable. The quasimetric ball of radius
r > 0 centred at x ∈ Ω̂ is given by

Br(x) = {y ∈ Ω̂ : ρ(x, y) < r}.
The principal result of this section assume that the pair (Ω̂, ρ) is a homogeneous space. As in
[SW06], a pair (Ω̂, ρ) is a homogeneous space if ρ is a above and the collection of quasimetric
balls {Br(y)}r>0;y∈Ω̂ satisfies a doubling condition with respect to Lebesgue measure. That
is, there are constants c2 > 1, C2 > 0 so that

|Bc2r(y)| ≤ C2|Br(y)|
for all y ∈ Ω̂ and r > 0.

Theorem A.4 Let (Ω̂, ρ) be a geometric homogeneous space and let Ω be a bounded domain
such that Ω ⊂ Ω̂. Assume that the Poincaré inequality (A.13) holds with p = 2 and that
the global Sobolev inequality (A.14) with gain σ > 1 holds. Let X be a second order linear
degenerate subelliptic operator with rough coefficients as in (A.3). Assume that F ∈ Lt(Ω)
with t > σ′ and G,H ∈ [Lq(Ω)]N with q > 2σ′. Then each of the following hold.
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1) There exists an at most countable set Σ ⊂ R such that the X- Dirichlet problem{
Xu = λu+ f̃ + T’g in Ω

u = 0 in ∂Ω
(A.17)

admits a unique weak solution u ∈ HQH1
0 (Ω) for every f̃ ∈ L2(Ω), every K ∈ N, every

K-tuple T of subunit fields and every g ∈ [L2(Ω)]K if and only if λ /∈ Σ.

2) If Σ is infinite, its elements can be arranged in a monotone sequence diverging to +∞.

3) If λ /∈ Σ there exists a constant C = C(λ,Ω,G,H, F ) > 0 such that

‖u‖QH1
0 (Ω) ≤ C

(
‖f‖L2(Ω) +

√
K‖g‖L2(Ω)

)
(A.18)

whenever f ∈ L2(Ω), K ∈ N,T is a K- tuple of subunit vector fields, g ∈ [L2(Ω)]N and
u ∈ QH1

0 (Ω) is a weak solution of (A.3).

4) If λ ∈ Σ, let N ⊂ QH1
0 (Ω) be the subspace of weak solution of the X-Dirichlet problem{

Xu = λu in Ω

u = 0 in ∂Ω

and N∗ ⊂ QH1
0 (Ω) be a subspace of weak solutions of the adjoint problem{

X∗u = λu in Ω

u = 0 in ∂Ω

Then 1 ≤ dimN = dimN∗ <∞ and problem (A.3) admits a weak solution u ∈ QH1
0 (Ω)

if and only if ∫
Ω

f̃v + gTv dx = 0 for all v ∈ N∗.

5) If X satisfies negativity condition (neq), see Definition bla, then Σ ⊂ (0,∞).

1. If X is self-adjoint (that is, if HR = GS almost everywhere in Ω), then all eigenvalues
of X are real, Σ is infinite and we have the following variational characterization of
the eigenvalues of X:

λ1 = min Σ = min
u∈QH1

0 (Ω)−{(0,h)}

L(u, u)∫
Ω
u2dx

,

and there exists an eigenfunction (u1,∇u1) ∈ QH1
0 (Ω) of the X-Dirichlet problem (A.3)

related to the eigenvalue λ1 for whom u1 ≥ 0 a.e. in Ω. Furthemore,

λ2 = min{ L(u, u)∫
Ω
u2dx

: u ∈ QH1
0 (Ω)− {(0,h)},

∫
Ω

uu1dx = 0},

with corresponding eigenfunction (u2,∇u2) ∈ QH1
0 (Ω) where u2 is orthogonal to u1 in

L2(Ω). Recursively, for every k ∈ N and for every j = 1, . . . , k − 1,

λk = min
{ L(u, u)∫

Ω
u2dx

: u ∈ QH1
0 (Ω)− {(0,h)},

∫
Ω

uujdx = 0
}
,
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with corresponding eigenfunction (uk,∇uk) ∈ QH1
0 (Ω) where uk is orthogonal to uj in

L2(Ω) for every j = 1, . . . , k − 1. Moreover, λ ∈ R is an eigenvalue if and only if
λk = λ for some k ∈ N. The sequence {uk}k∈N ⊂ L2(Ω) forms a complete orthogonal
system of L2(Ω). The sequence {(uk,∇uk)}k∈N ⊂ QH1

0 (Ω) is an independent system of
element of QH1

0 (Ω), which is also a system of generators of QH1
0 (Ω) if and only if the

projection i : QH1
0 (Ω)→ L2(Ω) is injective. Finally, problem (A.17) is variational with

associated functions defined on QH1
0 (Ω) by

I(u) =
1

2
L(u, u)− λ

2

∫
Ω

u2dx−
∫

Ω

f̃u+ gTudx.

Remark A.6 Theorem A.4 is a direct consequence of spectral results for the X- Dirichlet
problem with X a second order linear degenerate elliptic operator with rough coefficients
described in [MR15].

86



Bibliography

[ABT11] Richard C Aster, Brian Borchers, and Clifford H Thurber. Parameter estima-
tion and inverse problems, volume 90. Academic Press, 2011.

[AF09] Jean-Pierre Aubin and Hélène Frankowska. Set-valued analysis. Springer Sci-
ence & Business Media, 2009.
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[FI96b] Andrej Vladimirovič Fursikov and O Yu Imanuvilov. Controllability of evolu-
tion equations. Number 34. Seoul National University, 1996.

[Fic60] G Fichera. On a unified theory of boundary value problem for elliptic-parabolic
equations of second order in boundary problems, diff. eq, 1960.

[FK64] Hiroshi Fujita and Tosio Kato. On the navier-stokes initial value problem. i.
Archive for rational mechanics and analysis, 16(4):269–315, 1964.

[FKS82] Eugene B Fabes, Carlos E Kenig, and Raul P Serapioni. The local regularity
of solutions of degenerate elliptic equations. Communications in Statistics-
Theory and Methods, 7(1):77–116, 1982.

[FPZ95] Caroline Fabre, Jean-Pierre Puel, and Enrike Zuazua. Approximate control-
lability of the semilinear heat equation. Proceedings of the Royal Society of

89



Edinburgh: Section A Mathematics, 125(01):31–61, 1995.

[Fur95] Andrei V Fursikov. Exact boundary zero controllability of three-dimensional
navier-stokes equations. Journal of Dynamical and Control Systems, 1(3):325–
350, 1995.

[GL] Robert Gulliver and Walter Littman. Chord uniqueness and controllability:
The view from the boundary, i. differential geometric methods in the control
of partial differential equations (boulder, co, 1999), 145–175. Contemporary
Mathematics, 268.

[GLH08] Roland Glowinski, Jacques-Louis Lions, and Jiwen He. Exact and Approx-
imate Controllability for Distributed Parameter Systems: A Numerical Ap-
proach (Encyclopedia of Mathematics and its Applications). Cambridge Uni-
versity Press, 2008.
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